Consiliul Local al comunei Mihăileni județul Botoşani

HOTĂRARE

privind iniţierea procedurii de concesionare a serviciului de utilitate publică de distribuție a gazelor naturale în UAT Mihăileni, judeţul Botoşani

Consiliul Local al comunei Mihăileni, întrunit in ședința extraordinară de lucru din 06.12.2019
Având în vedere:
\Rightarrow Expunerea de motive a Primarului comunei Mihăileni, județul Botoșani;
$>$ Raportul de specialitate al administratorului public, ing. Apetri Ștefan;
$>$ Avizul comisiilor de specialitate din cadrul Consiliului J_ocal al comunei Mihăileni;
> Avizul de principiu nr. DD 13698 din 05.03.2019 eliberat de SN TGN Transgaz SA Mediaş;
> Studiul de fezabilitate elaborat de SC INFRA PLAN SRL cu sediul în mun. București, str. Litografiei, nr. 12A, sectorul 5;
$>$ Anexa nr. 41 "Inventarul bunurilor care aparțin domeniului public al comunei Mihăileni, județul Botoșani" aprobată prin HG nr. 971/2002;
$>$ HCL nr. 07 din 22.04.2019 privind aprobarea bugetului local pentru anul 2019 În conformitate cu prevederile:

- Art. 104 alin. $\left(1^{11}\right.$ din Legea nr.123/2012 a energiei electrice şi a gazelor naturale, republicata, cu modificările și completările ulterioare,
- Art. 1 alin.(1) art. 3 şi art. 4 din Cadrul general din 3 aprilie 201.9 privind regimul juridic al contractelor de concesiune a serviciului de utilitate publică de distribuţie a gazelor naturale, procedurile pentru acordarea concesiunilor, conținutul-cadru al caietului de sarcini, aprobat prin HG nr.209/2019
În baza art. 129 alin.(2) lit. d) şi alin(7) lit. n) din OUG nr.57/2019 privind Codul Administrativ;
În temeiul art. 139 alin.(3) lit. e) și art. 196, alin.(1), lit. a) din OUG nr.57/2019 privind Codul Administrativ,

HOTĂRĂȘTE

Art. 1 Se aproba Studiul de fezabilitate „Înfiinţare distribuție gaze naturale ín comuna Mihăileni judeţul Botoşani" elaborat de SC INFRA PLAN SRL cu sediul în mun. Bucureșii, str. Litografiei, nr. 12 A , sectorul 5 , în anul. 2019 , conform anexei care face parte integrantă din prezerţ̦a hotărâre.

Art. 2 Se aproba iniţierea procedurii de concesionare a serviciului de utilitate publică de distribuţie a gazelor naturale pentru unitatea administrativ-teritorială Mihăileni, județul Botoșani;

Art. 3 Se aproba punerea la dispoziţia concesionarului, cu titlu gratuit, pe toată durata concesiunii, a terenurilor necesare pentru realizarea obiectivelor aferente sistemelor de distribuţie a gazelor naturale, precum și a terenurilor necesare organizării de şantier pe durata realizării investiției.

Art. 4 Se aproba punerea la dispoziţia operatorului sistemului de transport, cu titlu gratuit, pe toată durata concesiunii, terenurile necesare amplasării instalaţiei de racordare la Sistemul naţional de transport, cu respectarea cerințelor legale;

Art. 5 Terenurile precizate la art. 3 şi art. 4 sunt în proprietatea unităţii administrativ-teritoriale Mihăileni, județul Botoşani pentru care Consiliul local are competență legală de autoritate deliberativă.

Art. 6 Hotărârea Consiliului Local nr. 27 din 15.12.2016 şi Anexa nr. 41 la Hotărârea Guvernului nr. 971/2002 privind atestarea domeniului public al județului Botoșani, precum și al municipiilor, orașelor și comunelor din județul Botoșani, publicată în Monitorul Oficial al României, Partea I, nr. 472 bis din 31.05.2006, cu modificările și completările ulterioare, reprezintă dovada deținerii de către consiliul local Mihăileni, pe toată durata concesiunii, a terenurilor necesare pentru realizarea obiectivelor aferente sistemului de distribuție a gazelor naturale, a celor aferente realizării racordării la Sistemul naţional de transport, precum şi a terenurilor necesare organizării de şantier pe durata realizării investiţiei;

Art. 7 În virtutea dispoziţiilor art. 109 din Legea nr. 123/2012, cu modificările şi completările ulterioare, se asigura dreptul de uz şi dreptul de servitute al viitorului concesionar al reţelei de distribuţie asupra terenurilor și altor bunuri proprietate publică, precum şi asupra activităţilor desfăşurate de persoane fizice sau juridice în vecinătatea capacităţ̣lor, pe durata lucrărilor de dezvoltare, reabilitare, modernizare, respectiv de exploatare şi de întreținere a capacităţilor respective; pentru executarea lucrărilor necesare în vederea realizării, reabilitării sau modernizării obiectivelor/sistemelor(drept de uz);asigurarea funcționării normale a capacităţii prin efectuarea reviziilor, reparaţiilor și a intervențiilor necesare (drept de uz); dreptul de trecere subterană, de suprafaţă sau aeriană pentru instalarea de rețele, de conducte, de linii sau de alte echipamente aferente obiectivelor/sistemelor şi pentru accesul la locul de amplasare a acestora; dreptul de a obține restrângerea sau încetarea unor activităţi care ar putea pune în pericol persoane şi bunuri; dreptul de acces la utilităţile publice.

Art. 8 Se aproba finanţarea din bugetul local a categoriilor de cheltuieli care nu sunt finanţate din Fondul de Dezvoltare şi Investiţii şi finanțarea obiectivului de investiţii „Înfiinţare distribuţie gaze naturale în comuna Mihăileni, județul Botoșani" din bugetul propriu şi din alte surse (credite, fonduri nerambursabile, fonduri guvernamentale, şi/sau neguvernamentale, etc.) legal constituite la nivelul comunei Mihăileni, județul Botoşani

Art. 9 Aproba următorii indicatorii tehnico- economici ai obiectivului de investiţii „Înfiinţare distribuţie gaze naturale în comuna Mihăileni, județul Botoșani"

> Valoarea totală a investiției $:$ din care $\mathrm{C}+\mathrm{M}:$ $7.697,855 \mathrm{mii}$ lei cu TVA ($6.914,741$ mii lei fără TVA $5.810,706$ mii lei cu TVAră TVA

Lungime totală reţea : 24.456 m
Durata estimată pentru executarea lucrărilor : 3 ani
Art. 9 Prevederile prezenței hotărâri vor fi duse la îndeplinire de către primarul comunei Mihăileni, prin compartimentele de specialitate.

PREŞEDINTE DE ȘEDINTĂ,
Benone LEVITQHNy

06.12.2019

Nr. 33/20

PROIECTANT: S.C. INFRA PLA

'’INFIINTARE DISTRIBUTIE GAZE NATURALI MIHAILENI, JUDETUL BOTOSAN

FAZA: STUDIU DE FEZABILITATE PROIECT NR. 2019021

Beneficiar: COMUNA MIHAILENI

FOAIE DE GARDA SI LISTA DE SEMNATURI

Denumire proiect: "INFIINTARE DISTRIBUTIE GAZE NATURALE IN COMUNA MIHAILENI, JUDETUL BOTOSANI" - FAZA S.F. proiect nr. 2019021

Amplasament: EXTRAVILANUL COMUNEI CANDESTI SI INTRAVILANUL SI EXTRAVILANUL COMUNEI MIHAILENI, JUDETUL BOTOSANI

Faza: Studiu de fezabilitate

Beneticiar: COMUNA MIHAILENI

Proiectant	S.C. INFRA PLAN S.R.L. BUCURESTI
de specialitate:	Sediu social: str. Litografiei, nr.12A, sector 5, Bucuresti
	$\frac{\text { Punct de lucru/adresa de corespondenta: str. Stirbei }}{\text { Voda nr. 50, ap. 3, sector 1, tel/fax: 021.337.32.37 }}$
	e-mail: office@infraplan.ro

Autotizatii ANRE: Tip PDSB Nr. 18159 si PT Nr. 16270

SEF PROIECT: ing. autorizat ANRE: MARINELA MINEA hua

BORDEROU

"INFIINTARE DISTRIBUTIE GAZE NATURALE IN COMUNA MIHAILENI, JUDETUL BOTOSANI"

PROIECT nr. 2019021 / lulie 2019

A. PIESE SCRISE

1. Foaie de garda si lista de semnaturi ;
2. Borderou;
3. Hotarare Consiliul Local;
4. Autorizatie INFRA PLAN S.R.L. tip PT nr. 16270 ;
5. Autorizatie INFRA PLAN S.R.L. tip PDSB nr.18159;
6. Solutie Transgaz Medias nr.DD17682/22.03.2019;
7. Memoriu tehnic ;
8. Schema de calcul-scenariul 1 ;
9. Calcul de dimensionare - scenariul 1;
10. Deviz general - Scenariul 1 ;
11. Deviz pe obiect si fisa evaluare ;
12. Centralizator cu fluxurile de venituri/cheltuieli si indicatorii economici-Scenariul 1 ;
13. Schema de calcul - scenariul 2 ;
14. Calcul de dimensionare - scenariul 2 ;
15. Deviz general - Scenariul 2 ;
16. Deviz pe obiect si fisa evaluare;
17. Centralizator cu fluxurile de venituri/cheltuieli si indicatorii economici-Scenariul 2 ;
18. Grafic de esalonare executie - Scenariul 1

B. PIESE DESENATE

1. Plan de ìncadrare in zona - scara 1:30000 [PIZ1];
2. Plan general - scara 1:10000 [PG1];
3. Plan de situatie - scara 1:1000 [PL 01 - PL22];

C. ANEXE

1. Certificat de Urbanism;
2. Avize si Acorduri;
3. Studiu Geotehnic.

În temeiul prevederilor Legii energiei electrice şi a gazelor naturale nr. 123/2012 cu modificările și completările ulterioare

Se acordă

AUTORIZATIE

destinată proiectării sistemelor de transport precum și a instalațiilor de utilizare a gazelor naturale care funcționează în regim de înaltă presiune, tip PT

$$
n r .16270
$$

S.C. INFRA PLAN S.R.L.

cu sediul in municipiul Bucureşti, str. Litografiei nr. 12A, sectorul 5

Prezenta autorizaţie este valabilă 5 ani, în condiţiile de valabilitate anexate. Bucureşti, 15.05.2016

In temeiul prevederilor Legii energiei electrice si a gazelor naturale nr. 123/2012 cu modificările și completările ulterioare

Se acordă

AUTORIZATIE

destinată proiectării sistemelor de distributie a gazelor naturale, a sistemelor de distribuție închise, precum și a instalațiulor aferente activitătii de producere/stocare biogaz/biometan ce funcționează în regim de medie, redusă ṣi joasă presiune, tip PDSB

nr. 18159

INFRA PLAN S.R.L.

> cu sediul in municipiul Bucuressit, str. Litografiei nr $12 A$, sectorul 5, municipiul Bucuresti

Prezenta autorizaţie este valabilă până la 04.04 .2023 , în condiţiile de valabilitate anexate.

Bucureşti, 05.04.2018

Nr. DD $\mid 6,2,3,2,2019$

Către,

PRIMĂRIA COMUNEI MIHĂILENI

Domnului Ioan Laurentiu Barbacariu, Primar

Referitor: Alimentarea cu gaze naturale a comunei Mihăileni, jud. Botoṣani
 Stimate Domnule,

Urmarea adresei dvs. privind racordarea în SNT a localității sus menționate, vă transmitem următorul

aviz de principiu

1. Soluția de alimentare cu gaze naturale constă în racordarea unui modul SRMP cu o capacitate tehnologică de $3694 \mathrm{Smc} / \mathrm{h}$ PN 40 bar, amplasat la limita zonei administrative a localității Părău Negru, prin intermediul unei conducte de racord de înaltă presiune DN 150 PN 40 bar și în lungime de cca. 0,313 km (lungime cu caracter informativ, se va definitiva la proiectare).
2. Racordarea se va face în conducta de înaltă presiune $\varnothing 20^{\circ}$ Bucecea-Siret, $P N=40$ bar.
3. Coordonatele STEREO 70 estimate ale punctului de racordare la SNT sunt X (583941) și Y (719398).
4. Accesul la Sistemul National de Transport al Gazelor Naturale se va face in conformitate cu Ordinul ANRE nr. 82/2017 și Legea nr. 123/2012-Legea energiei electrice și a gazelor naturale, cu modificările și completările ulterioare.

Cu stimă,

Tabel date primare
pentru intocmire $S F$

$\left.\begin{array}{\|l\|} \mathrm{Nr} . \\ \mathrm{crt} \end{array} \right\rvert\,$	Denumire sat	Nr. gospodarii		Nr. agentieconomici	Nr. obiective socio culturale	Observatii
		stanga	dreapta			
1	Mihăileni	155	126	18	7	
2	Pârâu Negru	58	81	0	2	
3	Rogojesti	111	144	2	2	
4	Sinăuți	92	118	0	2	
5	Vlădeni	71	79	0	2	

Nota: datele de mai sus se vor completa pentru fiecare localitate in parte

Alte date necesare:

- plan de incadrare in zona din PUG
- plan de situatie localitate din PUG
- masuratori topometrice
- studiu geotehnic

A. PIESE SCRISE

1. INFORMATII GENERALE PRIVIND OBIECTIVUL DE INVESTITII

Denumirea obiectului de investitii

"INFIINTARE DISTRIBUTIE GAZE NATURALE IN COMUNA MIHAILENI, JUDETUL BOTOSANI" - proiect nr. 2019021/2019

FAZA: STUDIU DE FEZABILITATE

Ordonator principal de credite / investitor

PRIMARIA COMUNEI MIHAILENI, JUDETUL BOTOSANI
Ordonator de credite (secundar / tertiar)
Nu este cazul.

Beneficiarul investitiei

COMUNA MIHAILENI, JUDETUL BOTOSANI.
Elaboratorul studiului de fezabilitate
S.C. INFRA PLAN S.R.L., Strada Litografiei, nr. 12A, sector 5, Bucuresti, punct de lucru/ adresa de corespondența strada Știrbei Voda, nr. 50, tel/fax.021.337.32.37 , adresa e-mail: office@infraplan.ro, CUI RO13722381, J40/1936/2001, certificat nr. 18709C - SR EN ISO 9001:2015, certificat nr.18709M - SR EN ISO 14001:2015, certificat nr. 18709SS - SR OHSAS 18001:2008.

2. SITUATIA EXISTENTA SI NECESITATEA REALIZARII OBIECTIVULUI I PROIECTULUI DE INVESTITII

2.1. Prezentarea contextului: politici, strategii, legislatie, acorduri relevante, structuri institutionale si financiare.

În prezent, în comuna Mihaileni, judetul Botosani, nu există sistem de distribuție gaze naturale. Locuitorii acesteia folosesc drept combustibil pentru prepararea hranei butelii cu gaze lichefiate si lemne, iar pentru incalzire combustibili solizi sau lichizi.

Utilizarea combustibililor solizi are un impact negativ asupra mediului (taiere paduri, poluare mediu), iar aprovizionarea cu butelii nu poate asigura confortul minim necesar pentru consumatori.

Obiectivul propus prin prezenta documentatie consta in alegerea solutiei tehnice pentru realizarea infiintarii sistemului de distributie gaze naturale in comuna Mihaileni, judetul Botosani.

Totodata vor fi estimate costurile necesare pentru realizarea obiectivului propus.
Prezenta documentatie este intocmita cu respectarea prevederilor HG nr. 907/2016 actualizata, a Normelor Tehnice pentru Proiectarea, Executarea si Exploatarea Sistemelor de Alimentare cu Gaze Naturale (NTPEE-2018), a Ordinului nr. 37/2013 si a legii nr. 10/1995 actualizata privind calitatea in constructii.

Conform H.C.L., Comuna Mihaileni va aloca o parte din fondurile necesare pentru realizarea infiintarii distributiei de gaze naturale in comuna, pentru alimentarea consumatorilor din imobile, obiective socio-culturale si agenti economici.

2.2. Analiza situatiei existente si identificarea deficientelor.

In momentul actual in comuna Mihaileni, judetul Botosani nu exista distributie de gaze naturale, gospodariile fiind incalzite atat cu combustibil solid cat si cu combustibil lichid.

Pentru prepararea hranei locuitorii comunei folosesc butelii (GPL).
Avand in vedere dificultatile cu care se confrunta populatia in aprovizionarea cu combustibili solizi si lichizi, precum si impactul pe care il au acestea asupra mediului Comuna Mihaileni isi propune realizarea distributiei de gaze naturale.

Scopul lucrarii este imbunatatirea nivelului de trai al populatiei prin ridicarea substantiala a gradului de confort al gospodariilor din mediul rural, reducerea impactului asupra mediului (taierea padurilor) si asigurarea unei dezvoltari economice a zonei, avand in vedere pozitionarea comunei Mihaileni in apropierea Municipiului Botosani (cca. 53 km), a zonei de frontiera cu Ucraina si pe malul stang al raului Molnita si Siret.

2.3. Analiza cererii de bunuri si servicii, inclusive prognoze pe termen mediu si lung privind evolutia cererii, in scopul justificarii necesitatii obiectivului de investitii.

Conform adresei emisa de Primaria Comunei Mihaileni, judetul Botosani, anexata, situatia existenta este urmatoarea:
>1035 Imobile;
> 14 Obiective socio-culturale;
> 20 agenti economici;

Calcul debit necesar

Consumurile de gaze naturale zilnice si anuale au fost calculate in urmatoarele conditii:
> Durate zilnice: 6 ore pentru prepararea hranei
8 ore pentru incalzire
> Durate anuale: 365 zile pentru prepararea hranei
150 zile pentru incalzire
S-a luat in calcul un debit de $2,47 \mathrm{Nmc} / \mathrm{h}$ pentru fiecare gospodarie, debit ce reprezinta:
> Pentru prepararea hranei: $1 \mathrm{M} . \mathrm{A} . \times 0.67 \mathrm{Nmc} / \mathrm{h}$
> Pentru incalzire si prepararea apei calde: 1 C.T. $\times 1.8 \mathrm{Nmc} / \mathrm{h}$.
Pentru obiectivele social - culturale se va lua in calcul un debit estimate de proiectant, functie de necesitati.

LOCALITATEA MIHAILENI

A) Necesarul de gaze naturale in prezent pentru populatie pentru prepararea hranei:

1. $\mathrm{N}_{\mathrm{g}}=281$ gospodarii
2. Debit instalat $=$ Qinst.
$Q_{\text {inst. }}=N_{g} \times 0.67 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst. }}=281$ gospodarii $\times 0.67 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=188,27 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{a n}$
$Q_{\text {an }}=Q_{\text {inst. }}$ 6h/zi $\times 365$ zile
$Q_{a n}=188,27 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} / \mathrm{zi} \times 365$ zile
$Q_{a n}=412,31$ mii Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{\text {an }}$ fs
$Q_{a n}$ fs $=Q_{a n} 0.65$ (factor de simultaneitate)
$Q_{a n f s}=412,311$ mii Nmc/an $\times 0.65$ (factor de simultaneitate)

$Q_{a n ~ f s ~}=268,00$ mii Nmc/an

B) Necesarul de gaze naturale in prezent pentru populatie pentru incalzire:

1. $\mathrm{N}_{\mathrm{g}}=281$ gospodarii
2. Debit instalat $=$ Qinst. $($ pentru incalzire -0 central termica)
$Q_{\text {inst. }}=N_{g} \times 1.8 \mathrm{Nmc} / \mathrm{h}$
Qinst. $=281$ gospodarii $\times 1.8 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=505,80 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=$ Qan
$Q_{a n}=Q_{\text {inst. }} \times 8 \mathrm{~h} /$ zi $\times 150$ zile
$Q_{\text {an }}=505,80 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{a n}=606,96$ mii Nmc/an
4. Consum anual (cu factor de simultaneitate) $=$ Qan fs
$Q_{a n}$ fs $=Q_{a n} 0.85$ (factor de simultaneitate)
$Q_{a n ~ f s}=606,96 \mathrm{Nmc} / \mathrm{h} \times 0.85$ (factor de simultaneitate)
$Q_{\mathrm{an}}^{\mathrm{fs}}=515,92 \mathrm{mii}$ Nmc/an
C) Necesarul de gaze naturale in prezent, estimat pentru obiectivele social - culturale pentru prepararea hranei si incalzire:
5. $\mathrm{Ng}_{\mathrm{g}}=8 \mathrm{OSC}$

Nr. crt	Obiectiv	Debit estimat $\mathbf{N m c / h}$
1	Scoala generala	10
2	Primaria	6
3	Camin cultural si biblioteca	10
4	Azil batrani	12
5	Biserica adventista	4

6	Biserica penticostala	3		
7	Fundatia culturala George Enescu	3		
8	Biserica	6		
TOTAL				$\mathbf{5 4}$

2. Debit instalat $=$ Qinst. ob. $=54 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=\mathrm{Qan}_{\text {an }}$

Qan $=$ Qinst.ob. $\times 6 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$\mathrm{Q}_{\mathrm{an}}=54 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{\mathrm{an}}=48,60 \mathrm{mii}$ Nmc/an
4. Consum anual (cu factor de simultaneitate) $=$ Qan fs
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{\text {an } f \text { s }}=48,60$ mii Nmc/an $\times 0.85$
$Q_{\text {an } f s}=41,31 \mathrm{mii}$ Nmc/an
D) Necesarul de gaze naturale in prezent, estimat pentru agentii economici:

1. Nr. ag. ec. $=18$;

Nr. crt	Agent economic	Debit estimat Nmc/h
1	Magazin (2 buc $\times 3,0 \mathrm{Nmc} / \mathrm{h})$	6
2	P.F.A. $(16$ buc $\times 1,8 \mathrm{Nmc} / \mathrm{h})$	28,8
TOTAL		34,80

2. Debit instalat $=Q_{\text {inst. }}=\mathbf{3 4 , 8 0} \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{a n}$

$$
\begin{aligned}
& Q_{\text {an }}=Q_{\text {inst.ob. }} \times 8 \mathrm{~h} / \mathrm{zi} \times 150 \text { zile } \\
& Q_{\text {an }}=34,80 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150 \text { zile } \\
& Q_{a n}=41,76 \mathrm{mii} \text { Nmc/an }
\end{aligned}
$$

4. Consum anual (cu factor de simultaneitate) $=Q_{\text {an } f s}$
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{\text {an fs }}=41,76 \mathrm{mii}$ Nmc/an $\times 0.85$ (factor de simultaneitate)
$Q_{\text {an } f s}=\mathbf{3 5 , 4 9} \mathbf{~ m i i}$ Nmc/an

TOTAL GENERAL LOCALITATEA MIHAILENI

$Q_{a n}=412,31$ mii Nmc/an $+606,96$ mii Nmc/an $+48,60$ mii $\mathrm{Nmc} / \mathrm{an}+41,76 \mathrm{mii} \mathrm{Nmc} / \mathrm{an}$
$=1.109,63 \mathrm{mii}$ Nmc/an
$Q_{a n \text { fs }}=268,00$ mii Nmc/an $+515,92$ mii Nmc/an $+41,31$ mii Nmc/an $+35,49$ mii Nmc/an
$=860,72 \mathrm{mii}$ Nmc/an
$Q_{\text {inst }}=188,27 \mathrm{Nmc} / \mathrm{h}+505,80 \mathrm{Nmc} / \mathrm{h}+54 \mathrm{Nmc} / \mathrm{h}+34,80 \mathrm{Nmc} / \mathrm{h}=782,87 \mathrm{Nmc} / \mathrm{h}$.
Qinst total $=782,87 \mathrm{Nmc} / \mathrm{h}$.

LOCALITATEA PARAU NEGRU

A) Necesarul de gaze naturale in prezent pentru populatie pentru prepararea hranei:

1. $\mathrm{N}_{\mathrm{g}}=139$ gospodarii
2. Debit instalat $=Q_{\text {inst. }}$
$Q_{\text {inst. }}=N_{\mathrm{g}} \times 0.67 \mathrm{Nmc} / \mathrm{h}$
Qinst. $=139$ gospodarii $\times 0.67 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=93,13 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{a n}$
$Q_{a n}=$ Qinst. 6h/zi $\times 365$ zile
$Q_{\text {an }}=93,13 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} / \mathrm{zi} \times 365$ zile
$\mathrm{Q}_{\mathrm{an}}=203,95 \mathrm{mii}$ Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{\text {an }}$ is
$Q_{a n f s}=Q_{a n} \times 0.65$ (factor de simultaneitate)
$Q_{a n f s}=203,95 \mathrm{mii}$ Nmc/an $\times 0.65$ (factor de simultaneitate)
$Q_{a n f s}=132,57 \mathrm{mii}$ Nmc/an
B) Necesarul de gaze naturale in prezent pentru populatie pentru incalzire:
5. $\mathrm{N}_{\mathrm{g}}=139$ gospodarii
6. Debit instalat $=Q_{\text {inst. }}$ (pentru incalzire $-o$ central termica)
$Q_{\text {inst. }}=N_{g} \times 1.8 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst. }}=139$ gospodarii $\times 1.8 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=\mathbf{2 5 0 , 2 0} \mathrm{Nmc} / \mathrm{h}$
7. Consum anual $=Q_{a n}$
$Q_{a n}=Q_{\text {inst. }} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{a n}=250,20 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{\mathrm{an}}=300,24 \mathrm{mii}$ Nmc/an
8. Consum anual (cu factor de simultaneitate) $=Q_{a n f s}$
$Q_{a n f s}=Q_{a n X} 0.85$ (factor de simultaneitate)
$Q_{a n f s}=300,24 \mathrm{Nmc} / \mathrm{h} \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=255,20$ mii Nmc/an
C) Necesarul de gaze naturale in prezent, estimat pentru obiectivele social - culturale pentru prepararea hranei si incalzire:
9. $\mathrm{N}_{\mathrm{g}}=8 \mathrm{OSC}$

Nr. crt	Obiectiv	Debit estimat Nmc/h
1	Scoala generala	3
2	Biserica	3
3	Biserica penticostala	3
		TOTAL
$\mathbf{y y y}$		

2. Debit instalat $=Q_{\text {inst. ob }}=9 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{a n}$
$Q_{a n}=Q_{\text {inst.ob. }} \times 6 \mathrm{~h} /$ zi $\times 150$ zile
$Q_{\text {an }}=9 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{a n}=8,10 \mathrm{mii}$ Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{a n ~ f s}$
$Q_{a n f s}=Q_{a n} x 0.85$ (factor de simultaneitate)
$Q_{\text {an } f s}=8,10$ mii Nmc/an $\times 0.85$
$Q_{a n} \mathrm{fs}=6,88 \mathrm{mii}$ Nmc/an
D) Necesarul de gaze naturale in prezent, estimat pentru agentii economici:
5. Nr. ag. ec. $=2$;

Nr. crt	Agent economic	Debit estimat $\mathrm{Nmc} / \mathrm{h}$
1	Magazin $(2$ bucx1,8Nmc/h)	3,6
TOTAL		3,6

2. Debit instalat $=$ Qinst. $=3,60 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{\text {an }}$

Qan $=Q_{\text {inst.ob. }} \times 8 \mathrm{~h} /$ zi $\times 150$ zile
$Q_{a n}=3,60 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{\mathrm{an}}=4,32 \mathrm{mii}$ Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{\text {an }}$ is
$Q_{a n \text { is }}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=4,32$ mii Nmc/an $\times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=3,67$ mii Nmc/an
TOTAL GENERAL LOCALITATEA PARAU NEGRU
$\mathrm{Q}_{\mathrm{an}}=203,95$ mii Nmc/an $+300,24$ mii Nmc/an $+8,10 \mathrm{mii}$ Nmc/an $+4,32 \mathrm{mii}$ Nmc/an $=516,61 \mathrm{mii}$ Nmc/an
$Q_{a n f s}=132,57$ mii Nmc/an $+255,20$ mii Nmc/an $+6,88$ mii Nmc/an $+3,67$ mii Nmc/an $=398,33 \mathrm{mii}$ Nmc/an
$Q_{\text {inst }}=93,13 \mathrm{Nmc} / \mathrm{h}+250,20 \mathrm{Nmc} / \mathrm{h}+9 \mathrm{Nmc} / \mathrm{h}+3,60 \mathrm{Nmc} / \mathrm{h}=355,93 \mathrm{Nmc} / \mathrm{h}$.
Qinst total $=355,93 \mathrm{Nmc} / \mathrm{h}$.

LOCALITATEA ROGOJESTI

A) Necesarul de gaze naturale in prezent pentru populatie pentru prepararea hranei:

1. $N_{g}=255$ gospodarii
2. Debit instalat $=Q_{\text {inst. }}$

$$
\begin{aligned}
& Q_{\text {inst. }}=\mathrm{Ng}_{\mathrm{g}} \times 0.67 \mathrm{Nmc} / \mathrm{h} \\
& Q_{\text {inst. }}=255 \text { gospodarii } \times 0.67 \mathrm{Nmc} / \mathrm{h} \\
& Q_{\text {inst }}=\mathbf{1 7 0 , 8 5} \mathrm{Nmc} / \mathrm{h}
\end{aligned}
$$

3. Consum anual $=Q_{\text {an }}$
$Q_{a n}=Q_{\text {inst. }} \times 6 \mathrm{~h} /$ zi $\times 365$ zile
$Q_{\mathrm{an}}=170,85 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} /$ zi $\times 365$ zile
$Q_{a n}=374,16 \mathrm{mii}$ Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{a n}$ fs
$Q_{a n f s}=Q_{a n} x 0.65$ (factor de simultaneitate)
$Q_{a n f s}=374,16$ mii $N m c / a n \times 0.65$ (factor de simultaneitate)
$Q_{a n f s}=243,20 \mathrm{mii}$ Nmc/an
B) Necesarul de gaze naturale in prezent pentru populatie pentru incalzire:
5. $\mathrm{N}_{\mathrm{g}}=255$ gospodarii
6. Debit instalat $=Q_{\text {inst. }}$ (pentru incalzire $-o$ central termica)
$Q_{i n s t}=N_{g} \times 1.8 \mathrm{Nmc} / \mathrm{h}$
Qinst. $=255$ gospodarii $\times 1.8 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=459,00 \mathrm{Nmc} / \mathrm{h}$
7. Consum anual $=Q_{a n}$

$$
Q_{a n}=Q_{\text {inst. }} \times 8 \mathrm{~h} / \text { zi } \times 150 \text { zile }
$$

$\mathrm{Q}_{\mathrm{an}}=459,00 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$\mathrm{Q}_{\mathrm{an}}=550,80 \mathrm{mii} \mathrm{Nmc} / \mathrm{an}$
4. Consum anual (cu factor de simultaneitate) $=Q_{a n ~ f s}$
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=550,80 \mathrm{Nmc} / \mathrm{h} \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=468,18$ mii Nmc/an
C) Necesarul de gaze naturale in prezent, estimat pentru obiectivele social - culturale pentru prepararea hranei si incalzire:

1. $\mathrm{Ng}_{\mathrm{g}}=3 \mathrm{OSC}$

Nr. crt	Obiectiv	Debit estimat Nmc/h
1	Scoala generala	4
2	Biserica	3
3	Camin cultural - cladire privata	3
TOTAL		

2. Debit instalat $=Q_{\text {inst. ob. }}=10 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=\mathrm{Q}_{\mathrm{an}}$
$Q_{a n}=Q_{\text {inst.ob. }} \times 6 \mathrm{~h} /$ zi $\times 150$ zile
$Q_{a n}=10 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{a n}=9,00$ mii Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{a n ~ f s}$
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{\text {an fs }}=9,00$ mii Nmc/an $\times 0.85$
$Q_{a n f s}=\mathbf{7 , 6 5} \mathbf{m i i}$ Nmc/an
D) Necesarul de gaze naturale in prezent, estimat pentru agentii economici:
5. Nr. ag. ec. $=2$;

Nr. crt	Agent economic	Debit estimat Nmc/h
1	Magazin $(1$ bucx1,8Nmc/h)	1,8
2	P.F.A. $(1$ buc $\times 1,8 \mathrm{Nmc} / \mathrm{h})$	1,8
TOTAL		

2. Debit instalat $=Q_{\text {inst. }}=\mathbf{3 , 6} \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=\mathrm{Q}_{\text {an }}$

$$
\begin{aligned}
& Q_{a n}=Q_{\text {inst.ob. } \times 8 \mathrm{~h} / \mathrm{zi} \times 150 \text { zile }} \\
& \mathrm{Q}_{\mathrm{an}}=3,6 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150 \text { zile } \\
& Q_{a n}=41,76 \mathrm{mii} \mathrm{Nmc} / \mathrm{an}
\end{aligned}
$$

4. Consum anual (cu factor de simultaneitate) $=Q_{a n ~ f s}$
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=4,32$ mii $N m c / a n \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=3,67$ mii Nmc/an

TOTAL GENERAL LOCALITATEA ROGOJESTI

$Q_{a n}=374,16$ mii Nmc/an $+550,80$ mii Nmc/an +9 mii Nmc/an $+4,32$ mii Nmc/an $=938,28 \mathrm{mii}$ Nmc/an
$\mathrm{Q}_{\mathrm{an} \text { fs }}=243,20$ mii $\mathrm{Nmc} / \mathrm{an}+468,18$ mii $\mathrm{Nmc} / \mathrm{an}+7,65$ mii $\mathrm{Nmc} / \mathrm{an}+3,67$ mii $\mathrm{Nmc} / \mathrm{an}$ $=722,70 \mathrm{mii}$ Nmc/an

$$
Q_{\text {inst }}=170,85 \mathrm{Nmc} / \mathrm{h}+459,00 \mathrm{Nmc} / \mathrm{h}+10 \mathrm{Nmc} / \mathrm{h}+3,6 \mathrm{Nmc} / \mathrm{h}=643,45 \mathrm{Nmc} / \mathrm{h} .
$$

Qinst total $=643,45 \mathrm{Nmc} / \mathrm{h}$.

LOCALITATEA SINAUTI

A) Necesarul de gaze naturale in prezent pentru populatie pentru prepararea hranei:

1. $\mathrm{N}_{\mathrm{g}}=210$ gospodarii
2. Debit instalat $=Q_{\text {inst. }}$
$Q_{\text {inst. }}=N_{g} \times 0.67 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst. }}=210$ gospodarii $\times 0.67 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=140,70 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{a n}$
$Q_{a n}=Q_{\text {inst. }} 6$ h/zi $\times 365$ zile
$Q_{a n}=140,70 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} / \mathrm{zi} \times 365$ zile
$Q_{a n}=308,13$ mii Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{a n}$ fs
$Q_{a n f s}=Q_{a n} \times 0.65$ (factor de simultaneitate)
$Q_{a n f s}=308,13 \mathrm{mii} \mathrm{Nmc} / \mathrm{an} \times 0.65$ (factor de simultaneitate)
$Q_{a n f s}=\mathbf{2 0 0 , 2 8} \mathbf{m i i}$ Nmc/an
B) Necesarul de gaze naturale in prezent pentru populatie pentru incalzire:
5. $\mathrm{N}_{\mathrm{g}}=210$ gospodarii
6. Debit instalat $=Q_{\text {inst. }}$ (pentru incalzire -0 central termica)
$Q_{\text {inst }}=N_{g} \times 1.8 \mathrm{Nmc} / \mathrm{h}$
Qinst. $=210$ gospodarii $\times 1.8 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=378,00 \mathrm{Nmc} / \mathrm{h}$
7. Consum anual $=Q_{a n}$
$Q_{a n}=Q_{\text {inst. }} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
Qan $=378,00 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$\mathrm{Q}_{\mathrm{an}}=453,60 \mathrm{mii}$ Nmc/an
8. Consum anual (cu factor de simultaneitate) $=Q_{a n ~ f s}$
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=453,60 \mathrm{Nmc} / \mathrm{h} \times 0.85$ (factor de simultaneitate)
$Q_{a n}$ fs $=385,56 \mathrm{mii} \mathrm{Nmc} / \mathrm{an}$
C) Necesarul de gaze naturale in prezent, estimat pentru obiectivele social - culturale pentru prepararea hranei si incalzire:
9. $\mathrm{N}_{\mathrm{g}}=3 \mathrm{OSC}$

Nr. crt	Obiectiv	Debit estimat Nmc/h
1	Biserica adventista	4
2	Centru de zi batrani	6
3	Camin cultura	6
TOTAL		$\mathbf{1 6}$

2. Debit instalat $=Q_{\text {inst. ob }}=16 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{a n}$
$Q_{a n}=Q_{i n s t . o b} \times 6 h / z i \times 150$ zile
$Q_{a n}=16 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} / \mathrm{zi} \times 150$ zile

$Q_{\mathrm{an}}=14,40 \mathrm{mii}$ Nmc/an

4. Consum anual (cu factor de simultaneitate) $=Q_{a n ~ f s}$
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{a n}$ fs $=14,40$ mii $\mathrm{Nmc} / \mathrm{an} \times 0.85$
$Q_{a n f s}=12,24$ mii Nmc/an
D) Necesarul de gaze naturale in prezent, estimat pentru agentii economici:
5. Nr. ag. ec. $=1$;

Nr. crt	Agent economic	Debit estimat Nmc/h
1	Magazin (1 bucx $1,8 \mathrm{Nmc} / \mathrm{h})$	1,8
TOTAL	1,8	

2. Debit instalat $=Q_{\text {inst. }}=1,8 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{\text {an }}$

$$
Q_{a n}=\text { Qinst.ob. } \times 8 \mathrm{~h} / \text { zi } \times 150 \text { zile }
$$

$Q_{\text {an }}=1,8 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{a n}=2,16 \mathrm{mii}$ Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{a n ~ f s}$
$Q_{a n ~ f s}=Q_{a n x} 0.85$ (factor de simultaneitate)
$Q_{a n f s}=2,16 \mathrm{mii}$ Nmc/an $\times 0.85$ (factor de simultaneitate)
$Q_{a n} f_{s}=1,83$ mii Nmc/an

TOTAL GENERAL LOCALITATEA SINAUTI

$Q_{a n}=308,13$ mii Nmc/an $+453,60$ mii Nmc/an $+14,40 \mathrm{mii} \mathrm{Nmc} / \mathrm{an}+2,16 \mathrm{mii} \mathrm{Nmc} / \mathrm{an}$
 $=778,29$ mii Nmc/an

$Q_{a n}$ fs $=200,28$ mii Nmc/an $+385,56$ mii Nmc/an $+12,24$ mii Nmc/an $+1,83$ mii Nmc/an $=599,92 \mathrm{mii}$ Nmc/an
$Q_{\text {inst }}=140,70 \mathrm{Nmc} / \mathrm{h}+378,00 \mathrm{Nmc} / \mathrm{h}+16 \mathrm{Nmc} / \mathrm{h}+1,8 \mathrm{Nmc} / \mathrm{h}=536,50 \mathrm{Nmc} / \mathrm{h}$.
Qinst total $=536,50 \mathrm{Nmc} / \mathrm{h}$.

LOCALITATEA VLADENI

A) Necesarul de gaze naturale in prezent pentru populatie pentru prepararea hranei:

1. $\mathrm{N}_{\mathrm{g}}=150$ gospodarii
2. Debit instalat $=$ Qinst.
$Q_{\text {inst. }}=N_{g} \times 0.67 \mathrm{Nmc} / \mathrm{h}$
Qinst. $=150$ gospodarii $\times 0.67 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=100,50 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{a n}$

Qan $=$ Qinst. $6 \mathrm{~h} / \mathrm{zi} \times 365$ zile
$Q_{\mathrm{an}}=100,50 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} / \mathrm{zi} \times 365$ zile
$Q_{a n}=220,09$ mii Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{a n f s}$
$Q_{a n f s}=Q_{a n} \times 0.65$ (factor de simultaneitate)
$Q_{\text {an fs }}=220,09 \mathrm{mii}$ Nmc/an $\times 0.65$ (factor de simultaneitate)
$Q_{a n ~ f s}=143,06$ mii Nmc/an
B) Necesarul de gaze naturale in prezent pentru populatie pentru incalzire:

1. $\mathbf{N}_{g}=150$ gospodarii
2. Debit instalat $=Q_{\text {inst }}$ (pentru incalzire $-o$ central termica)
$Q_{\text {inst. }}=N_{g} \times 1.8 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst. }}=150$ gospodarii $\times 1.8 \mathrm{Nmc} / \mathrm{h}$
$Q_{\text {inst }}=270,00 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=Q_{\text {an }}$

$$
\text { Qan }=\text { Qinst. }^{\text {X }} 8 \mathrm{~h} / \text { zi } \times 150 \text { zile }
$$

$Q_{a n}=270,00 \mathrm{Nmc} / \mathrm{h} \times 8 \mathrm{~h} / \mathrm{zi} \times 150$ zile
$Q_{\mathrm{an}}=324,00$ mii $\mathrm{Nmc} / \mathrm{an}$
4. Consum anual (cu factor de simultaneitate) $=Q_{a n}$ is
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{a n}$ fs $=324,00 \mathrm{Nmc} / \mathrm{h} \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=275,40$ mii Nmc/an
C) Necesarul de gaze naturale in prezent, estimat pentru obiectivele social - culturale pentru prepararea hranei si incalzire:

1. $\mathrm{Ng}_{\mathrm{g}}=3 \mathrm{OSC}$

Nr. crt	Obiectiv	Debit estimat $\mathbf{N m c} / \mathrm{h}$		
1	Scoala generala	3		
2	Biserica	3		
3	Camin cultural	3		
TOTAL				9

2. Debit instalat $=Q_{\text {inst. ob. }}=9 \mathrm{Nmc} / \mathrm{h}$
3. Consum anual $=\mathrm{Qan}_{\mathrm{an}}$
$Q_{a n}=Q_{\text {inst.ob. }} \times 6 \mathrm{~h} /$ zi $\times 150$ zile
$Q_{a n}=9 \mathrm{Nmc} / \mathrm{h} \times 6 \mathrm{~h} /$ zi $\times 150$ zile
$Q_{a n}=8,10 \mathrm{mii}$ Nmc/an
4. Consum anual (cu factor de simultaneitate) $=Q_{a n f s}$

rrawn mint
ravidan mex
$Q_{a n f s}=Q_{a n} \times 0.85$ (factor de simultaneitate)
$Q_{a n f s}=8,10 \mathrm{mii}$ Nmc/an $\times 0.85$
$Q_{a n f s}=6,88 \mathbf{~ m i i}$ Nmc/an
D) Necesarul de gaze naturale in prezent, estimat pentru agentii economici:
5. Nr. ag. ec. $=0$;

TOTAL GENERAL LOCALITATEA VLADENI

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{an}} & =220,09 \mathrm{mii} \text { Nmc/an }+324,00 \mathrm{mii} \text { Nmc/an }+8,10 \mathrm{mii} \text { Nmc/an }+0 \text { mii } \mathrm{Nmc} / \mathrm{an} \\
& =552,19 \text { mii Nmc/an } \\
Q_{\text {an fs }} & =143,06 \text { mii Nmc/an }+275,40 \text { mii Nmc/an }+6,88 \text { mii Nmc/an }+0 \text { mii Nmc/an } \\
& =\mathbf{4 2 5 , 3 4} \text { mii Nmc/an }
\end{aligned}
$$

$Q_{\text {inst }}=100,50 \mathrm{Nmc} / \mathrm{h}+270,00 \mathrm{Nmc} / \mathrm{h}+9 \mathrm{Nmc} / \mathrm{h}+0 \mathrm{Nmc} / \mathrm{h}=379,50 \mathrm{Nmc} / \mathrm{h}$.
Qinst total $=379,50 \mathrm{Nmc} / \mathrm{h}$.

TOTAL GENERAL COMUNA MIHAILENI

$Q_{\text {an }}=1.109,63$ mii Nmc/an $+516,61$ mii Nmc/an $+938,28$ mii $\mathrm{Nmc} / \mathrm{an}+778,29$ mii $\mathrm{Nmc} / \mathrm{an}$
$+552,19 \mathrm{mii}$ Nmc/an $=\mathbf{3 . 8 9 5 , 0 1} \mathbf{~ m i i}$ Nmc/an
$Q_{\text {an } f s}=860,72$ mii Nmc/an $+398,33$ mii Nmc/an $+722,70$ mii Nmc/an $+599,92$ mii Nmc/an
$+425,34 \mathrm{mii} \mathrm{Nmc} / \mathrm{an}=3.007,03 \mathrm{mii}$ Nmc/an
$Q_{\text {inst }}=782,87 \mathrm{Nmc} / \mathrm{h}+355,93 \mathrm{Nmc} / \mathrm{h}+643,45 \mathrm{Nmc} / \mathrm{h}+536,5 \mathrm{Nmc} / \mathrm{h}+379,50 \mathrm{Nmc} / \mathrm{h}$
$=2698,25 \mathrm{Nmc} / \mathrm{h}$.
Qinst total $=\mathbf{2 6 9 8}, \mathbf{2 5} \mathrm{Nmc} / \mathrm{h}$.
Din statistica intocmita de reprezentantii Primariei Mihaileni majoritatea locuitorilor comunei doresc racordarea la sistemul de distributie gaze naturale, evitandu-se astfel dificultatiile cu care se confrunta acestia in aprovizionarea cu combustili solizi, lichizi si gazosi pentru incalzirea locuintelor si prepararea hranei, precum si cresterea nivelului de confort.

Avand in vedere ca locuitorii comunei Mihaileni practica agricultura si cresterea animalelor au un venit corespunzator pentru a-si permite racordarea la sistemul de distributie gaze naturale a imobilelor. Astfel, preconizam ca in primul an de la receptionarea si punerea in functiune a retelei de distributie gaze naturale sa se racordeze circa 30% din imobile, in al doilea an 30%, in al treilea an 30\%, iar diferenta pana la 100% in maxim cinci ani.

Obiective preconizate a fi atinse prin realizarea investitiei publice.

Odată cu realizarea obiectivului de investiție "Înființare distribuție gaze naturale in comuna Mihaileni, judetul Botosani" se asigură:
$>$ Imbunatatirea conditiilor de viata a locuitorilor in mediu rural;
> Reducerea impactului asupra mediului (taierea padurilor, poluarea);
$>$ O dezvoltare economica a zonei, avand in vedere pozitia localitatii Mihaileni, in apropierea Municipiului Botosani si a zonei de frontiera cu Ucraina.

3. IDENTIFICAREA, PROPUNEREA SI PREZENTAREA A MINIMUM DOUA SCENARIIIOPTIUNI TEHNICO - ECONOMICE PENTRU REALIZAREA OBIECTIVULUI DE INVESTITII.

3.1. Particularitati ale amplasamentului

a) Descrierea amplasamentului (localizare - intravilan/extravilan, suprafata terenului, dimensiuni in plan, regim juridic - natura proprietatii sau titlul de proprietate, servituti, drept de preemptiune, zona de utilitate publica, reducerea impactului negative asupra mediului prin reducerea taierii padurilor, informatii/obligatii/constrangeri extrase din documentatiile de urbanism, dupa caz).

Comuna Mihaileni este situata in partea de nord - vest a judetului, la granita cu Ucraina, pe malul stang al raului Molnita si pe malul raului Siret. Este strabatuta de drumul national DN29C, fiind formata din localitatea de resedinta cu acelasi nume si din localitatile Parau Negru, Rogojesti, Sinauti si Vladeni.

Terenul pe care se va amplasa investitia este situat in extravilanul comunei Candesti si extravilanul si intravilanul comunei Mihaileni, judetul Botosani, apartinand domeniului public.

Suprafata totala ocupata temporar este de 13.190 mp astfel:
> Suprafata ocupata temporar de retele PEHD SDR11 Dn160mm, L =502m (extravilanul comunei Candesti): 590 mp ;
$>$ Suprafata ocupata temporar de retele conducte PEHD SDR11 Dn160mm \div Dn63mm, $L=23.954 \mathrm{~m}$ (extravilanul si intravilanul comunei Mihaileni): 12.600 mp ;

Suprafata totala ocupata definitiv este de 60 mp astfel:

$>$ Suprafata ocupata definitiv post de masurare (PM): 30 mp ;
> Suprafata ocupata definitiv drum acces (PM): 30mp.
b) Refatiile cu zone invecinate, accesuri existente si/sau cai de acces posibile

Comuna Mihaileni este situata in partea de nord - vest a judetului, la granita cu Ucraina, pe malul stang al raului Molnita si pe malul raului Siret.

Vecinatati:

> Nord: granita Ucraina;
> Vest: localitatea Siret;
> Sud: localitatea Rogojesti;
> Est: localitatea Dersca.
Cai de acces: drumul national DN26C, drumul judetean DJ291B, strazile si drumurile comunale din zona studiata.

c) Orientari propuse fata de punctele cardinale si fata de punctele de interes naturale sau construite.

Teritoriul administrativ al comunei Mihaileni este situat in partea de nord - vest a judetului Botosani la cca 53 km , la granita cu Ucraina, intr-o regiune deluroasa, pe malul stang al raului Molnita si pe malul raului Siret.

Coordonatele geografice ale localitatii sunt $47^{\circ} 57^{\prime} 56^{\prime \prime}$ latitudine si $26^{\circ} 09^{\prime} 49^{\prime \prime}$ longitudine.

d) Surse de poluare existente in zona;

Nu este cazul.

e) Datele climatice si particularitati de relief

Aşezată în nord-estul ţării comuna Mihaileni are clima influenţată de masele de aer din estul continentului reci şi uscate cât şi de masele de aer arctice reci şi umede.

Vara predomină masele de aer umede şi răcoroase cu frecvenţă mai redusă fiind masele cu aer cald şi secetos, de tip continental. larna predomină masele de aer ale anticiclonului siberian dar şi masele de aer polar care determină temperaturi scăzute şi vânturi puternice. Alteori prezenţa maselor de aer arctic şi groenlandez determină producerea unor ninsori abundente cu viscoliri puternice.

Temperatura medie anuală este de 8 grade cu media lunilor de vară de 18 grade, iar a lunilor de iarnă minus 10 grade. Temperaturile extreme a fost de 34 grade şi respectiv minus 27 grade. Primul îngheţ apare la sfârşitul lunii septembrie iar ultimul la începutul lunii mai. Intre aceste limite numărul posibil de zile cu îngheţ este de 205 ceea ce influenţează structura culturilor agricole.

Umiditatea medie a maselor de aer este mare (80 la sută) maxima fiind în decembrie iar minima în aprilie.Cantitatea medie a precipitaţillor este de $750 \mathrm{~mm} /$ an cu o maximă în luna iunie şi minima în februarie. Numărul anual de zile cu precipitaţii fiind de 170. In zonă predomină vânturile din nord-vest şi sud est mai frecvente şi puternice la sfârşitul iernii. Ploile cele mai frecvente sînt cele din primăvară. Topirea zăpezilor ca şi, uneori, ploile torenţiale însoţite de fulgere şi trăznete, aduc inundaţii.

Aceste inundaţii, ca şi uneori, aşa numitele „cumpene" torente de ploaie, mai ales primăvara şi vara, cînd plantele sînt în plină dezvoltare, torente însoţite de gheaţă "grindină", produc mari stricăciuni culturilor de plante. Clima de aici se caracterizeză prin ierni aspre, uneori cu zăpezi şi „troiene" mari, viscole („gicoale") şi vara calde datorită curenţilor de pe cursul rîului Siret.

Adancimea maxima de inghet in zona investigata conform STAS 6054-84 este de 1.10 m
Din punct de vedere geomorfologic, zona studiata apartine Campiei Romane.

f) Existenta unor:

$>$ Retele edilitare identificate pe amplasamentul lucrarilor propuse nu necesita relocare, respectandu-se distantele de siguranta prevazute de Normele de proiectare si executie in vigoare.

Tabelul nr. 1 - Distante de siguranta intre conductele (conductele de distributie/racordurile/instalatile de
 utilizare) subterane de gaze naturale si diferite constructii sau instalatii

**) De la piciorul taluzului
**) Din axul liniei de cale ferata
Nota: Distantele, exprimate in metri, se masoara in proiectie orizontala intre limitele exterioare ale conductelor si constructiile sau instalatile subterane

- La posibilele intersectii sau aproprieri ale conductei de gaze naturale cu celelalte utilitati aceasta va fi protejata in tub de protectie din OL, cu caracteristicile corespunzatoare diametrului conductei.
Amplasamentul propus pentru reteaua de distributie gaze naturale va respecta conditionarile specifice fata de eventualul amplasament al monumentelor istorice existente sau zona imediat invecinata a acestora, fara a le afecta.
> In zona amplasamentului investitiei propuse nu sunt terenuri care sa apartina unor institutii ce fac parte din sistemul de aparare, ordine publica si siguranta nationala.
g) Caracteristici geofizice ale terenului din amplasament-extras din studiul geotehnic elaborat conform normativelor in vigoare, cuprinzand:

(i) Date privind zonarea seismica

Conform hartii de macrozonare seismica a teritoriului Romaniei, perimetrul cercetat se incadreaza in macrozona de intensitate 7 , cu o perioada de revenire de 50 ani.

Conform Normativ P100-1/2013, "Cod de proiectare seismica - Partea I", valoarea de varf a acceleratiei terenului pentru proiectare, pentru cutremure avand intervalul mediu de recurenta $I M R=225$ ani si 20% probabilitate de depasire in 50 ani, este $a_{g}=0.25 \mathrm{~g}$, iar perioada de control (colt) a spectrului de raspuns este $\mathrm{T}_{\mathrm{c}}=1.0 \mathrm{~s}$

Figura 1 - Zonarea teritoriului Romaniei in termeni de valori de vârf ale acceleraţiei terenului pentru proiectare a_{g}

Figura 2 - Zonarea teritoriului României în termeni de perioada de control (colts), TC a spectrului de raspuns.

(ii) Date geologice generale

Sub raport geologic teritoriul localitatii Mihaileni cuprinde două serii de formaţiuni suprapuse, cu caractere diferite: - un fundament cristalin cutat de vârstã precambriană; - o stivă de sedimente de vârstă paleozoică, mezozoică şi neozoică necutate. Depunerile neogene care acoperă aproape întreaga suprafaţă a judeţului aparţin miocenului şi cuprind douã orizonturi: tortonianul şi sarmaţianul. Tortonianul apare la zi doar în malul Prutului între Oroftiana şi Liveni fiind alcãtuit dintr-un facies marno-calcaros.

Sarmaţianul constituie formaţiunea de suprafaţă care are răspândirea cea mai mare. Formaţiunile sarmaţiene sunt reprezentate printr-un facies calcaros recifal (Valea Prutului între Crasnaleuca şi Ştefăneşti) şi un facies argilo-nisipos (pe văile unor afluenţi ai Prutului); tot de vârstă sarmaţiană sunt şi argilele, nisipurile şi gresiile ce apar în zona Dorohoi, Botoşani, Copălău, Frumuşica. Partea de sud a judeţului, la sud de aliniamentul localităţilor Copălău-Suliţa-Albeşti şi Santa Mare sunt răspândite argilele cenuşii cu întercalaţii de nisipuri, iar pe dealurile mai înalte apar calcarele şi gresiile oolitice. Deasupra tuturor acestor formaţiuni pe culmile dealurilor apare o cuvertură de depuneri leoessoide de vârstă cuaternară.

(iii) Date geotehnice obtinute din: planuri cu amplasamentul forajelor, fise complete cu rezultatele determinarilor de laborator, analiza apei subterane, raportul geotehnic cu recomandarile pentru fundare si consolidari, harti de zonare geotehnica, arhive accesibile, dupa caz:

Pentru stabilirea conditiilor geotehnice ale amplasamentului se vor executata foraje geotehnice $\varnothing 3$ " la adancimea minima de $1,00 \mathrm{~m}$.

(iv) Incadrarea in zona de risc (cutremur, alunecari de teren, inundatii) in conformitate cu reglementarile tehnice in vigoare;

Conform "Strategiei nationale de prevenire a situatiilor de urgenta", riscurile naturale se refera la evenimente in cadrul carora parametrii de stare se pot manifesta in limite variabile de la normal catre pericol, cauzate de fenomene meteo periculoase, in cauza ploi si ninsori abundente, variatii de temperatura - inghet, seceta, canicula - furtuni si fenomene distructive de origine geologica, respectiv cutremure, alunecari si prabusiri de teren. In general, sunt considerate riscuri naturale acele evenimente care schimba intr-un timp relativ scurt si cu un grad apreciabil de violenta o stare de echilibru existenta.

Pentru prevenirea si diminuarea pagubelor potentiale generate de inundatii se va avea in vedere: evitarea realizarii de constructii (de locuinte si de obiective sociale, culturale si/sau economice) in zonele potential inundabile; realizarea de masuri structurale de protectie, inclusiv in zona podurilor si podetelor; regularizarea cursurilor raului Siret si a paraielor, efectuarea unor lucrari de indiguiri, de aparari maluri, etc; intretinerea albiilor cursurilor de apa prin ingrijirea vegetatiei de pe maluri, prin controlul strict asupra depozitarii gunoaielor si a altor materiale care pot colmata sectiunea de scurgere a apei; realizarea de acumulari cu rol complex sau pentru atenuarea viiturilor acumulari nepermanente.

Alunecarile de teren sunt determinate in principal de alcatuirea petrografica formata din: luturi, marne argiloase, nisipuri, favorizate de existenta stratelor acvifere de mica adancime in care apar izvoare de panta, defrisari, variatii de temperatura, modificari aduse prin terasari etc. Acestea sunt un fenomen destul de frecvent in zona. Datorita pozitiei unghiulare dintre Suceava si Siret si a eroziunii provocate de afluentii celor doua rauri, platourile structurale ale Podisului Dragomirna au fost reduse foarte mult in latime.

Din punct de vedere al cutremurelor, amplasamentul se situeaza in zona caracterizata printr-o valoarea a acceleratiei terenului pentru proiectare $\mathrm{a}_{\mathrm{g}}=0,15 \mathrm{~g}$. In zona nu exista focare sau zone seismice, insa sunt resimtite undele elastice ale zonei seismice Vrancea.

3.2. Descrierea din punct de vedere tehnic, constructiv, functional - arhitectural si tehnologic.

a) Caracteristici tehnice si parametri specifici obiectivului de investitie.

In vederea alimentarii cu gaze naturale a consumatorilor casnici, a obiectivelor socioculturale, precum si a consumatorilor economici din comuna Mihaileni, judetul Botosani se vor executa urmatoarele lucrari:

Scenariul 1

> Un racord comun functionand in regim de presiune inalta din conducta de inalta presiune $\varnothing 8{ }^{\prime \prime}$ ",Bucecea-Siret" PN40 bar, realizat din conducta OL $\varnothing 6$ " cu o lungime de cca. 15ml conform Aviz de principiu nr. DD 13698/05.03.2019 elaborat de SNTGN Transgaz SA Medias anexat;
Racordul de presiune inalta va fi comun pentru comunele Gramesti, Candesti si Mihaileni, iar costurile aferente executiei vor fi suportate de toate cele trei comune beneficiare conform devizelor anexate;

- O statie de reglare masurare predare (SRMP) comuna pentru localitatile Gramesti, Candesti si Mihaileni, amplasata la intrarea in localitatea Candesti, jud. Botosani, in nord-estul acesteia, pe partea stanga a drumului satesc. Capacitatea initiala propusa pentru SRMP este $\mathrm{Q}=6.500 \mathrm{Nmc} / \mathrm{h}$, cu posibilitatea de marire la aparitia de noi consumatori. Costurile aferente executiei SRMP-ului vor fi suportate in mod solidar de cele trei comune beneficiare, conform devizelor anexate.
> Un post de masurare (PM) amplasat in sud - estul localitatii Mihaileni, pe partea dreapta a drumului comunal DC88, sens de mers Candesti - Mihaileni, conform plan de situatie PI.02. Capacitatea initiala propusa este $\mathrm{Q}=2000 \mathrm{Nmc} / \mathrm{h}$.
> Un drum de acces la PM nou proiectat, realizat din piatra sparta, in lungime de cca 10 ml si latime de 3 m .
$>$ O retea de distributie gaze naturale functionand in regim de presiune medie, ce se va cupla in viitoarea retea de distributie a comunei Candesti, realizata din conducte PEHD SDR11 PE100 cu diametrele Dn160mm, Dn140mm, Dn110mm, Dn90mm si Dn63mm, in lungime de cca. 24.456 m . Reteaua va fi de tip ramificat. Proiectarea racordului (dimensionarea racordului, a curbelor, fitingurilor, flanselor si robinetilor) precum si a statiei de reglare masurare predare (SRMP) se va face in concordanta cu prevederile „Normelor tehnice pentru proiectarea si executia conductelor de alimentare din amonte si de transport al gazelor naturale", precum si a precizarilor Operatorului de transport SNTGN Transgaz SA Medias, numai de catre operatori economici autorizati ANRE.

Racordul propus se va realiza din teava de OL $\varnothing 6$ " preizolata cu polietilena extrudata, teava tip Fuchs. Avand in vederea situatia din teren, clasa de locatie este I, latimea culoarului de lucru fiind de 10 m .

Se vor respecta distantele de siguranta cuprinse in Anexa 10 la Normele tehnice pentru proiectarea si executia conductelor de alimentare din amonte si de transport al gazelor naturale.

Sapatura se va executa atat mecanizat cat si manual, teava fiind pozata la min. $0,9 \mathrm{~m}$ fata de generatoarea superioara si cota zero a terenului.

Dupa executie terenul va fi adus la starea initiala, respectandu-se principalele interdictii care se aplica in zona de protectie a COTG (conform art. 30-33 din Normele tehnice).

Statia de reglare masurare predare (SRMP) comuna pentru comunele Gramesti, Candesti si Mihaileni, va fi de tip casetat, intr-o singura treapta de presiune (presiune inalta-presiune medie), amplasata la intrarea in localitatea Candesti, jud. Botosani, in nord-estul acesteia, pe partea stanga a drumului satesc, cu o capacitatee initiala propusa de $\mathrm{Q}=6.500 \mathrm{Nmc} / \mathrm{h}$, cu posibilitatea de marire la aparitia de noi consumatori. Aceasta va avea in componenta atat reglare cat si masurare si va respecta distantele de siguranta dintre statia de reglare masurare si diferitele constructii sau instalatii, cuprinse in Tabelul nr. 2 din Normelor Tehnice pentru proiectarea, executarea si exploatarea sistemelor de alimentare cu gaze naturale (NTPEE-2018), de mai jos. Componenta statiei de reglare masurare va fi definitivata de catre Operatorul sistemului de transport SNTGN Transgaz SA Medias.

De asemnea, documentatia tehnica faza PTE pentru racord si statia de reglare masurare predare (SRMP) se va intocmi numai de societati autorizate ANRE si se va aviza de catre Operatorul de transport SNTGN Transgaz SA Medias.

Panoul de masurare va masura cantitatea de gaze naturale pentru comuna Mihaileni, judetul Botosani.

Conductele aferente retelei de distributie din comuna Mihaileni se vor amplasa la min. $0,90 \mathrm{~m}$ fata de generatoarea superioara si cota zero a terenului, numai in domeniul public, urmarind trama strazilor si drumurilor comunale, de preferinta in urmatoarea ordine: marginea drumului, trotuar si zona verde, cu respectarea distantelor corespunzatoare regimului de presiune medie, conform tabelului 1 anexat, din Norme Tehnice pentru proiectarea, executarea si exploatarea sistemelor de alimentare cu gaze naturale (NTPEE/2018), precum si a avizelor si acordurilor aferente Certificatului de urbanism, elaborate de detinatorii de utilitati. Tabelul nr. 1 - Distante de siguranta intre conductele (conductele de distributie/ racordurile/ instalatiile de utilizare) subterane de gaze naturale si diferite constructii sau instalatii

Nr . Crt.	Instalatia, constructia sau obstacolul	Distanta minima de la conducta de gaze naturale din $P E$, in mm			
		PJ	PR	PM	PI
1	Cladiri cu subsoluri sau aliniamente de terenuri susceptibile de a fi construite	1,0	1,0	2,0	3,0
2	Cladiri fara subsoluri	0,5	0,5	1,0	3,0
3	Canale pentru retele termice, canale pentru instalatii telefonice, televiziune, etc.	0,5	0,5	1,0	3,0
4	Conducte de canalizare	1,0	1,0	1,5	1,5
5	Conducte de apa, cabluri de forta, cabluri telefonice montate direct in sol, cabluri TV sau caminele acestor instalatii	0,5	0,5	0,5	$\frac{1,5}{}$
6	Camine pentru retele termice, telefonice si canalizare sau alte camine subterane	0,5	0,5	1,0	1,5

7	Linii de tramvai pana la sina cea mai apropiata	0,5	0,5	0,5	1,5
8	Copaci	0,5	0,5	$\mathbf{0 , 5}$	1,5
9	Stalpi	0,5	0,5	$\mathbf{0 , 5}$	0,5
10	Linii de cale ferata, exclusiv cele din statii, triaje si incinte industriale; -in rambleu	$1,5^{*}$	$1,5^{*}$	$\mathbf{1 , 5}$	$2,0^{*}$
	-in debleu la nivelul terenului	$3,0^{* *}$	$3,0^{* *}$	$\mathbf{3 , 0}$	

*) De la piciorul taluzului
**) Din axul liniei de cale ferata
Nota: Distantele, exprimate in metri, se masoara in proiectie orizontala intre limitele exterioare ale conductelor si constructile sau instalatiile subterane

Reteaua de distributie aferente comunei Mihaileni a fost dimensionata tinand cont de prevederile Normelor tehnice pentru proiectarea si executia sistemelor de alimentare cu gaze naturale NTPEE - 2018 luandu-se in calcul un debitul instalat total $Q_{\text {inst. }}=\mathbf{2 6 9 8}, \mathbf{2 5} \mathbf{N m c} / \mathrm{h}$ pentru comuna Mihaileni (conform calcul cap. 2.3) si perspectiva pentru viitorii consumatori. Presiunea de calcul considerata in punctul de cuplare in viitoarea retea de distributie a comunei Candesti este de 4,28bar, conform calculului de dimensionare - Scenariul 1, anexat.

Conductele de distributie vor functiona in regim de presiune medie, fiind realizate din teava PEHD100 SDR11 PE100 cu diametrele Dn160mm, Dn140mm, Dn110mm, Dn90mm si Dn63mm cu o lungime totala de 24.456 ml , repartizate pe diametre si lungimi astfel:

- Dn160mm - 1.492 m
- Dn140mm-4.419m
- Dn110mm-1.039m
- Dn 90mm-7.604m
- Dn63mm-9.902m

Scenariul 2

In acest scenariu se vor executa aceleasi lucrari ca in Scenariul 1, si anume: racord presiune inalta, statie de reglare masurare, panou de masura si retea de distributie cu precizarea ca reteaua de distributie va functiona in regim de presiune inalta.

Astfel, se vor executa:
$>$ Un racord comun functionand in regim de presiune inalta din conducta de inalta presiune $\varnothing 8$ " "Bucecea-Siret" PN40 bar, realizat din conducta OL $\varnothing 6$ " cu o lungime de cca. 15ml conform Aviz de principiu nr. DD 13698/05.03.2019 elaborat de SNTGN Transgaz SA Medias anexat;
Racordul de presiune inalta va fi comun pentru comunele Gramesti, Candesti si Mihaileni, iar costurile aferente executiei vor fi suportate de toate cele trei comune beneficiare conform devizelor anexate;

- O statie de reglare masurare predare (SRMP) comuna pentru localitatile Gramesti, Candesti si Mihaileni, amplasata la intrarea in localitatea Candesti, jud. Botosani, in nord-estul acesteia, pe partea stanga a drumului satesc. Capacitatea initiala propusa pentru SRMP este $\mathrm{Q}=6.500 \mathrm{Nmc} / \mathrm{h}$, cu posibilitatea de marire la aparitia de noi consumatori. Costurile aferente executiei SRMP-ului vor fi suportate in mod solidar de cele trei comune beneficiare, conform devizelor anexate.
- Un post de masurare (PM) amplasat in sud - estul localitatii Mihaileni, pe partea dreapta a drumului comunal DC88, sens de mers Candesti - Mihaileni, conform plan de situatie Pl.02. Capacitatea initiala propusa este $\mathrm{Q}=2000 \mathrm{Nmc} / \mathrm{h}$.
> Un drum de acces la PM nou proiectat, realizat din piatra sparta, in lungime de cca 10 ml si latime de 3 m .
> O retea de distributie gaze naturale functionand in regim de presiune inalta, ce se va cupla in viitoarea retea de distributie a comunei Candesti, realizata din conducte PEHD SDR11 PE100 cu diametrele Dn140mm, Dn125mm, Dn90mm si Dn63mm, in lungime de cca. 24.456 m . Reteaua va fi de tip ramificat.

Conductele din reteaua de distributie se vor amplasa la min. $0,90 \mathrm{~m}$ fata de generatoarea superioara si cota zero a terenului, numai in domeniul public, de preferinta in urmatoarea ordine: marginea drumului, zona verde si trotuar, cu respectarea distantelor corespunzatoare regimului de presiune inalta, conform tabelului 1 anexat, din Norme Tehnice pentru proiectarea, executarea si exploatarea sistemelor de alimentare cu gaze naturale (NTPEE/2018), precum si a avizelor si acordurilor aferente Certificatului de urbanism, elaborate de detinatorii de utilitati.
Tabelul nr. 1 - Distante de siguranta intre conductele (conductele de distributie/ racordurile/ instalatiile de utilizare) subterane de gaze naturale si diferite constructii sau instalatii

Nr .	Instalatia, constructia sau obstacolul	Distanta minima de la conducta de gaze naturale din PE, in mm			
		PJ	PR	PM	PI
1	Cladiri cu subsoluri sau aliniamente de terenuri susceptibile de a fi construite	1,0	1,0	2,0	3,0
2	Cladiri fara subsoluri	0,5	0,5	1,0	3,0
3	Canale pentru retele termice, canale pentru instalatii telefonice, televiziune, etc.	0,5	0,5	1,0	2,0
4	Conducte de canalizare	1,0	1,0	1,5	1,5
5	Conducte de apa, cabluri de forta, cabluri telefonice montate direct in sol, cabluri TV sau caminele acestor instalatii	0,5	0,5	0,5	1,5
6	Camine pentru retele termice, telefonice si canalizare sau alte camine subterane	0,5	0,5	1,0	1,5
7	Linii de tramvai pana la sina cea mai apropiata	0,5	0,5	0,5	1,5
8	Copaci	0,5	0,5	0,5	1,5

9	Stalpi	0,5	0,5	0,5	$\mathbf{0 , 5}$
10	Linii de cale ferata, exclusiv cele din statii, triaje si incinte industriale; -in rambleu	$1,5^{*}$	$1,5^{*}$	$1,5^{*}$	$\mathbf{2 , 0 ^ { * }}$
	-in debleu la nivelul terenului	$3,0^{* *}$	$3,0^{* *}$	$3,0^{* *}$	$\mathbf{5 , 5}$

*) De la piciorul taluzului
**) Din axul liniei de cale ferata
Nota: Distantele, exprimate in metri, se masoara in proiectie orizontala intre limitele exterioare ale conductelor si constructiile sau instalatile subterane

Reteaua de distributie a fost dimensionata tinand cont de prevederile Normelor tehnice pentru proiectarea si executia sistemelor de alimentare cu gaze naturale NTPEE - 2018 luanduse in calcul un debitul instalat total Qinst. $=2698,25 \mathrm{Nmc} / \mathrm{h}$ pentru comuna Mihaileni (conform calcul cap. 2.3). Presiunea de calcul considerata in punctul de cuplare in viitoarea retea de distributie a comunei Candesti este de 5.90 bar, conform calculului de dimensionare - Scenariul 2, anexat.

Conductele din reteaua de distributie a comunei Mihaileni vor functiona in regim de presiune inalta, fiind realizate din teava PEHD100 SDR11 PE100 cu diametrele cuprinse intre Dn140mm, Dn125mm, Dn90mm si Dn63mm cu o lungime totala de 24.456 ml , repartizate pe diametre astfel:

- Dn140mm-1.492m
- Dn125mm-4.419m
- Dn90mm-3.363m
- Dn63mm-15.182m

In cele doua scenarii, conducta PEHD SDR 11 PE100 din care se va executa reteaua de distributie, va fi insotita pe intreg traseul de un fir trasor, in scopul identificarii acesteia. Firul trasor este un conductor de cupru monofilar, cu sectiunea minima de $1,5 \mathrm{~mm}^{2}$, cu izolatie corespunzatoare unei tensiuni de strapungere minima de 5 kV . Firul trasor se fixeaza de-a lungul generatoarei superioare a conductei din polietilena, la distante de maxim 4 m , cu banda adeziva.

De asemenea, deasupra conductei montata subteran, pe toata lungimea traseului, la o inaltime de 35 cm de generatoarea superioara a acestora, este obligatorie montarea unei benzi de avertizare din materiale plastice de culoare galbena cu o latime minima de 15 cm si inscriptionata « Gaze naturale - Pericol de explozie».

Pentru conductele de distributie din PE, rasuflatorile se monteaza la capetele tubului de protectie, precum si in alte situatii deosebite evidentiate de proiectant sau de catre operatorul de distributie.

Conductele se vor proba cu aer la presiuea de rezistenta si la etanseitate in conformitate cu fisa tehnica intocmita de proiectantul de specialitate pentru executie.

Detaliile tehnologice, precum si conditiile generale pentru principalele operatii de montare a conductelor de distributie din PE si OL se vor realiza dupa tehnologia de lucru a constructorului autorizat, cu respectarea Normelor tehnice privind proiectarea, executarea si exploatarea sistemelor de alimentare cu gaze naturale(NTPEE/2018), a STAS-urilor si normativelor in vigoare precum si a caietului de sarcini.

Tevile din polietilena PEHD100 - destinate tuturor tipurilor de imbinari, corespunzator SDR 11 - SR ISO 4437+C1/2001 sunt livrate in colaci sau bare, in functie de dimensiunea acestora.

Montajul conductelor de distributie gaze naturale de presiune redusa din polietilena se va realiza numai de agenti economici autorizati care sunt dotati cu utilaje si personal necesar, calificat si autorizat A.N.R.E.si ISCIR.

Fitinguri
Schimbarea de directie in plan orizontal si vertical se face prin curbe executate manual din teava de polietilena fara aport de caldura la o raza minima de curbura de 30 Dn .

Unde nu este posibila montarea unei curbe cu raza 30 Dn , se vor monta coturi fabricate, la 90° si 45°, ce pot fi montate prin sudare, printr-unul din procedeele omologate.

Nu se admite realizarea curbelor cu ajutorul masinilor si nici prin incalzirea tubului din polietilena.

Fitingurile se vor realiza din materii prime care sa corespunda integral conditiilor impuse pentru materia prima din care este realizata teava.

Toate fitingurile vor fi insotite de certificat de calitate si verificate inainte de montaj sa nu aiba: crapaturi, urme de deteriorari mecanice, etc.

Sapatura santului se executa in trotuar, carosabil sau spatii verzi, in functie de configuratia strazilor si aglomeratiile de retele subterane si se va realiza conform profilelor tip anexate la proiectul tehnic.

Inainte de inceperea sapaturii pentru montaj conducta, pentru determinarea precisa a canalizatiilor subterane existente in zona de pozare a conductei de gaze, se vor convoca la fata locului beneficiarii acestora si se vor face sondaje transversale din 50 m in 50 m , pe o lungime de 2 m (1 m stanga si 1 m dreapta) la adancimea de minimum $1,5 \mathrm{~m}$ pentru detectarea precisa a retelelelor subterane existente in zona de amplasare a conductei, in vederea respectarii distantelor de siguranta impuse de NTPEE - 2018.

Sapatura pentru sondaje se va realiza manual fiind executata cu mare atentie pentru a evita eventualele accidente umane sau tehnice.

Santul se realizeaza in conditiile NTPEE - 2018, manual sau mecanizat in functie de conditiile locale.

Santurile pentru montajul conductei se vor sapa cu putin timp inainte a montajului conductei.

Gropile de pozitie pentru imbinarea conductei vor avea dimensiunile :

$$
\text { - latimea } \quad \text { latime sant }+0.6 \mathrm{ml}
$$

- personal autorizat pentru sudura in polietilena.

Pe conducta se vor prevede rasuflatori la distante de maxim 150 m una de alta. La distante de maxim 150 m se vor realiza diafragme impermeabile constituite din teren compact (din argila) necesare pentru intreruperea drenajului, conform detaliului din plansa desenata anexata prezentului proiect.

Dupa terminarea montarii se vor verifica toate fitingurile si conducta si se vor incepe pregatirile pentru efectuarea probelor de presiune.

Probele de presiune constituie faza determinanta si se vor efectua conform NTPEE - 2018, tabelul 8 astfel :

- \quad verificarea si proba de rezistenta pentru conductele de presiune medie se vor realiza la presiunea de 9bar.
- verificarea si proba de etansare pentru conductele de presiune medie se vor realiza la presiunea de 6 bar.
- verificarea si proba de rezistenta pentru conductele de presiune inalta se vor realiza la presiunea de 15bar.
- verificarea si proba de etansare pentru conductele de presiune inalta se vor realiza la presiunea de 10 bar.

Efectuarea verificarilor si probelor la conductele de distributie se realizeaza astfel:

- verificarea se face pe tronsoane de pana la 500 m la presiunile de mai sus, iar verificarea se considera corespunzatoare daca presiunea se mentine constanta minim 4 ore.
- proba se executa pe conductele terminate si se efectueaza la presiuni conform tab. 8 din NTPEE/2018, iar proba se considera corespunzatoare daca presiunea se mentine constanta 24 ore.

Sapatura se va executa atat mecanizat cat si manual functie de situatia din teren.
Pentru o buna exploatare, pe traseul conductei se prevad vane de sectionare.
La intersectiile conductelor de gaze naturale cu alte utilitati acestea vor fi protejate cu tub de protectie OL.

Traversarile de drumuri si podete se vor executa prin foraj orizontal dirijat.

Punerea in functiune a conductei de distributie gaze naturale

Punerea in functiune a conductelor se face de constructor, prin instalatorul autorizat in prezenta delegatului operatorului sistemului de distributie.

Thy (at my Thy
M

La punerea in functiune a conductelor, operatorul sistemului de distributie are obligatia de a completa cartea constructiei pe baza proiectului si a tuturor documentelor de atestare a calitatii lucrarilor si a conditiilor concrete de executie puse la dispozitia sa de catre constructor.

Se va intocmi de catre constructor planul conductelor pentru cartea constructiei pe care se vor mentiona distantele intre suduri, locul sudurilor de pozitie, diametrul conductei, locul schimbarilor de diametru, lungimea fiecarui tronson de conducta pe diametre si lungimea totala a conductei, locul de intersectie cu alte conducte, cabluri, etc, distanta pana la alte instalatii intalnite in sapatura, constructii sau alte obstacole subterane, locurile dispozitivelor de inchidere, profile transversale in puncte aglomerate. De asemenea constructorul va pune la dispozitia beneficiarului pentru completarea cartii constructiei:

- certificate de calitate materiale,
- procese verbale de lucrari ascunse,
- diagramele probelor de presiune.

Masuri de protectie a mediului
Sistemul de distributie gaze va fi astfel conceput incat sa nu poata produce efecte negative asupra sanatatii populatiei si nici a personalului de exploatare. In organizarea functionarii sistemului se vor prevede mijloace adecvate pentru prevenirea asfixierilor cu gaze sau producerea exploziilor sau incendiilor in cazuri accidentale.

Materialele necesare executarii lucrarilor se depoziteaza in locuri bine stabilite, amenajate corespunzator, in vederea prevenirii poluarii solului si subsolului.

La terminarea lucrarilor, executantul are obligatia curatarii zonelor afectate de orice materiale si reziduuri, iar deseurile revalorificabile rezultate se predau unitatilor autorizate sa preia acest tip de deseuri.

Mijloacele de transport vor fi etanse pentru a se evita imprastierea materialelor sau deseurilor pe carosabil.

Orice interventie la utilaje se va face in locuri amenajate si prevazute cu instalatii de coletare a deseurilor lichide sau solide produse.

Se vor organiza spatii bine determinate pentru depozitarea diverselor deseuri pana la evacuarea de pe amplasament.

Se interzice afectarea vecinatatilor lucrarii.
Este obligatia executantului lucrarii de a remedia orice poluari accidentale produse din vina sa in timpul executarii lucrarilor, etc.

BREVIAR DE CALCUL

- calculul hidraulic al conductelor

Pentru calcul au fost utilizate relatiile de mai jos.
Calculul de dimensionare consta in determinarea diametrului necesar pentru transportul unui anumit debit de gaz pe lungimea conductei, cand se cunosc presiunile la capete. Diametrul calculat trebuie sa asigure respectarea limitei de viteza de curgere prin conducta.

In Scenariul 1 s -a luat in calcul o presiune in punctul de cuplarea in reteaua de distributie a localitatii Candesti de 4,28 bar, iar in Scenariul 2 respectiv 5,9bar.

Determinarea diametrului conductelor se face pe baza caderii de presiune admisa, stabilita de relatia :
$\Delta p=p_{1}-p_{2}$, in care:
p_{1} - presiunea absoluta minima disponibila la intrarea in conducta, bara;
p_{2} - presiunea absoluta minima la iesirea din conducta, bara;
In conditiile de mai sus, debitul de calcul al conductelor de presiune medie si inalta, este dat de relatia:
$\mathrm{D}=0,56\left[\frac{Q_{c s}^{2} T L \delta \lambda}{P_{1}^{2}-P_{2}^{2}}\right]^{0.2}$
[cm], relatia (1)
in care :
$Q_{\text {cs }}$ - debitul de calcul, in $\mathrm{m}^{3} / \mathrm{h}$ (in conditii standard);
p1 - presiunea in punctul initial, in bara ;
p2 - presiunea in punctul final, in bara ;
D - diametrul interior al conductei, in cm ;
T - temperatura gazelor in conducta, in K ;
$\mathrm{L} \quad$ - lungimea tronsonului de conducta, in Km ;
$\delta \quad$ - densitatea relativa a gazelor fata de densitatea aerului, $\delta=0,554$;
$\lambda \quad$ - coeficient de pierdere liniara de sarcina, ce se determina in functie de Re si k/D;
Coeficientul de rezistenta hidraulica liniara se determina cu relatia :
$\frac{1}{\sqrt{\lambda}}=2 \lg \left(\frac{2,51}{\operatorname{Re} \sqrt{\lambda}}+\frac{k}{3,71 D}\right)_{\text {relatia (2); }}$
in care:
Re - numarul Reynolds, calculat cu relatiile: $\operatorname{Re}=\frac{w D}{v}$ sau $\operatorname{Re}=2230 \frac{Q_{c s}}{D}$
k -rugozitatea conductelor: - pentru conducte din otel: $k=0,05 \mathrm{~cm}$;

- pentru conducte din mase plastice: $k=0,007 \mathrm{~cm}$.
w - viteza gazului in conducta, in m / s;
D - diametrul interior al conductei, in m;
$v \quad$ - coeficientul de vascozitate cinematica, in $\mathrm{m}^{2} / \mathrm{s}$.
- calculul de verificare la viteza al conductelor

Viteza maxima admisibila a gazelor naturale in retele de distributie este reglementata.
Viteza medie a gazelor intr-un tronson de conducta in regim de curgere permanenta la presiune medie si redusa, cu destindere izoterma, se calculeaza cu relatia:
$w=\frac{5,375 \cdot Q c s}{D^{2}\left(p_{1}+\frac{p_{2_{2}}^{2}}{p_{1}+p_{2}}\right)}$ relatia (3);
in care: w, Qcs, D, p_{1}, p_{2} au semnificatiile si unitatile de masura din relatia 1.
In conditiile prezentate mai sus s-a efectuat calculul de dimensionare si verificarea vitezei de curgere conform Normelor Tehnice reglementate de ANRE, iar rezultatele calculului au condus la urmatoarele rezultate:

- Parametrii retelei proiectate pentru Scenariul 1 - presiune medie - Anexa "Calcul de dimensionare - Scenariul 1"
- Parametrii retelei proiectate pentru Scenariul 2 - presiune inalta - Anexa "Calcul de dimensionare - Scenariul 2".

Desi Scenariul 2 este cel mai optim atat din punct de vedere economic (valoare investitiei este mai mica), cat si tehnic (diametre si armaturi cu diametre mai mici, mai usor de executat si exploatat), tinand cont insa de faptul ca exploatarea retelelor functionand in regim de presiune medie este mai uzuala pentru operatorii de distributie, regimul de presiune inalta pentru retele, fiind nou implementat (NTPEE/2018), neexistand un istoric in acest sens, propunem ca varianta optima Scenariul 1.

b) Varianta constructiva de realizare a investitiei.

Scenariul ales privind alimentarea cu gaze naturale a consumatorilor din comuna Mihaileni, judetul Botosani este scenariul 1 si consta in realizarea urmatoarelor lucrari:
$>$ Un racord comun functionand in regim de presiune inalta din conducta de inalta presiune $\varnothing 8$ " "Bucecea-Siret" PN40 bar, realizat din conducta OL $\varnothing 6$ " cu o lungime de cca. 15 ml conform Aviz de principiu nr. DD 13698/05.03.2019 elaborat de SNTGN Transgaz SA Medias anexat;
Racordul de presiune inalta va fi comun pentru comunele Gramesti, Candesti si Mihaileni, iar costurile aferente executiei vor fi suportate de toate cele trei comune beneficiare conform devizelor anexate;

INFRA

, O statie de reglare masurare predare (SRMP) comuna pentru localitatile Gramesti, Candesti si Mihaileni, amplasata la intrarea in localitatea Candesti, jud. Botosani, in nord-estul acesteia, pe partea stanga a drumului satesc. Capacitatea initiala propusa pentru SRMP este $\mathrm{Q}=6.500 \mathrm{Nmc} / \mathrm{h}$, cu posibilitatea de marire la aparitia de noi consumatori. Costurile aferente executiei SRMP-ului vor fi suportate in mod solidar de cele trei comune beneficiare, conform devizelor anexate.
> Un post de masurare (PM) amplasat in sud - estul localitatii Mihaileni, pe partea dreapta a drumului comunal DC88, sens de mers Candesti - Mihaileni, conform plan de situatie PI.02. Capacitatea initiala propusa este $\mathrm{Q}=2000 \mathrm{Nmc} / \mathrm{h}$.
$>$ Un drum de acces la PM nou proiectat, realizat din piatra sparta, in lungime de cca 10 ml si latime de 3 m .
> O retea de distributie gaze naturale functionand in regim de presiune medie, ce se va cupla in viitoarea retea de distributie a comunei Candesti, realizata din conducte PEHD SDR11 PE100 cu diametrele Dn160mm, Dn140mm, Dn110mm, Dn90mm si Dn63mm, in lungime de cca. 24.456m. Reteaua va fi de tip ramificat.

c) Echiparea si dotarea specifica functiunii propuse.

Postul de masurare (PM) va avea in componenta masurare si va fi amplasat la intrarea in comuna Candesti, in nord - estul acesteia, pe partea stanga a drumului comunal DC88, pe un teren proprietatea beneficiarului, Comuna Mihaileni. Capacitatea initiala propusa va fi de $2.000 \mathrm{Nmc} / \mathrm{h}$.

3.3. Costurile estimative ale investitiei

a) Costurile estimate pentru realizarea investitiei, cu luarea in considerare a costurilor unor investitii similare, ori a unor standarde de cost pentru investitii similare corelativ cu caracteristicile tehnice si parametrii specifici obiectivului de investitii.
Costurile pentru realizarea investitiei se regasesc estimate in fisele de evaluare, devizele pe obiecte si devizul general ce fac parte integranta din prezentul studiu.

Scenariul 1

Costurile pentru realizarea investitiei sunt:
Valoarea de investitie fara TVA (aprilie 2019) $=7.309,122$ mii lei
cu TVA $($ aprilie 2019$)=8.697,855$ mii lei din care :

- valoarea C+M fara TVA (aprilie 2019) $=5.810,706 \mathrm{mii}$ lei.
cu TVA (aprilie 2019) $=6.914,741$ mii lei

Scenariul 2

Costurile pentru realizarea investitiei sunt:
Valoarea de investitie fara TVA (aprilie 2019) $=6.468,346 \mathrm{mii}$ lei
cu TVA (aprilie 2019) $=7.697,331$ mii lei din care:

> - valoarea C+M fara TVA (aprilie 2019$)=5.377,573$ mii lei.
> cu TVA (aprilie 2019) $=6.399,311$ mii lei
b) Costurile estimative de operare pe durata normata de viata / amortizare a investitiei

Acestea se regasesc in anexa „Centralizator cu fluxurile de venituri/cheltuieli si indicatori economici"
3.4. Studii de specialitate, in functie de categoria si clasa de imoprtanta a constructiilor, dupa caz.
a) Studiu topografic
3.5. Grafice orientative de realizare a investitiei.

Durata de realizare a investitiei va fi influentata de alocarea fondurilor banesti.
Se propun:

- 30 luni (proiectare PAC, PTE+ executie), din care 27 luni executie - Scenariul 1.

4. ANALIZA FIECARUI/FIECAREI SCENARIU/OPTIUNI TEHNICO - ECONOMIC(E) PROPUS(E)

4.1. Analiza financiara, inclusive calcularea indicatorilor de performanta financiara: fluxul cumulate, valoarea actuala neta, rata interna de rentabilitate; sustenabilitate financiara.

Scopul analizei financiare este acela de a identifica si cuantifica cheltuielile necesare pentru implementarea proiectului, dar si a cheltuielilor si veniturilor generate de proiect in faza operationala.

Ipoteze ale analizei financiare

Rata de actualizare
a) Ratele de actualizare recomandate de CE sunt:

- in cazul analizei financiare 5%, valoare ce reflecta costul de oportunitate al capitalului;
- in cazul analizei economice 5,5\%.
b) Avand in vedere OUG nr. 19/2019 pentru modificarea si completarea unor acte normative, pentru calculul tarifelor de transport si distribuție a gazelor naturale, în perioada de reglementare 2019-2024, rata de rentabilitate a capitalului investit, reprezentând costul mediu al capitalului investit, exprimat în termeni reali, înainte de impozitare, este de 6,9\%.

Pentru a patra perioada de reglementare, rata anuala de crestere a eficientei economice este egala cu 1% pe an pentru fiecare operator de distributie.

Conform Ordinului ANRE nr. 217/2018, rata reglementata a rentabilitatii capitalului investit (RRR) se determina pentru o perioada de reglementare si reflecta estimarea privind profitul ce urmeaza a fi generat de capitalul investit de Operatorul de distributie pentru desfasurarea activitatiii de distributie a gazelor naturale, avand in vedere conditiile curente ale pietei de capital.

Valoarea RRR pentru activitatea de distributie a gazelor naturale este considerata valoarea WACC (costul mediu ponderat al capitalui) in termeni reali, inainte de impozitare, aprobata de ANRE. Pentru imobilizarile corporale si necorporale noi aferente sistemului de distributie, puse in functiune, ANRE poate stabili acordarea unui stimulent peste valoarea RRR.

Rata reglementata a rentabilitatii este stabilita in termeni reali, inaintede impozitul pe profit si este egala cu valoarea costului mediu ponderat al capitalului, determinat in termeni reali, inainte de impozitul pe profit.

WACC reflecta costul capitalului pentru un operator de referinta care desfasoara exclusiv activitatea reglementata. Pentru calculul WACC, ANRE utilizeaza urmatoarea formula:

RRR $=$ CCP* ${ }^{*} \mathrm{Kp} /(1-\mathrm{T})+\mathrm{CCI}^{*} \mathrm{Ki}(\%)$
Unde:
CCP - costul capitalului propriu in termeni reali, calculat dupa impozitare, recunoscut de ANRE (\%);

CCI - costul capitalului imprumutat in termeni reali, calcult inainte de impozitare, recunoscut de ANRE (\%);

Kp - ponderea capitalului propriu in total capital, stabilita de ANRE;
Ki - ponderea capitalului imprumutat in total capital, stabilita de ANRE; $\mathrm{Ki}=(1-\mathrm{Kp})$;
T-rata impozitului pe profit.

Se va considera: Rata reglementate a rentabilitati capitalului $R R R=6.9 \%$

Previziunile financiare si estimarea costurilor de investitii au fost facute in lei. Perioada analizata este de 41 de ani, mai mica decat cu durata de functionare a obiectivului de investitii, considerand caracteristicile proiectului de investitii propus cat si principiul de prudentialitate care impune alegerea unei perioade rezonabile de analiza (durata maxima de viata a conductelor de PEHD 50 ani).

Durata realizarii investitiei este de 30 luni (proiectare PAC, PTE+ executie), din care 27 Iuni executie - Scenariul 1

Analiza financiara, impreuna cu analiza economica reprezinta cele mai puternice argumente in favoarea deciziei de investitie. In concluzie, nu ne putem astepta ca un investitor sa „plateasca" pentru rezultatele care ar fi fost obtinute oricum, fara investitia sa.

Astfel veniturile se actualizeaza in fiecare an si este comparata cu valoarea prezenta a investitiei, pentru a se stabili daca valoarea actualizata neta (VNA) a proiectului are o valoare pozitiva sau negativa.

Costul total al investitiei cuprinde cheltuieli proiectare si asistenta tehnica precum si cheltuielile aferente lucrarilor de executie. Valoarea totala a investitiei este $7.309,122$ mii lei fara

TVA esalonata pe o perioada de 30 luni, din care 27 executie - scenariul 1, conform graficului de realizare a investitiei anexat.

Pe langa investitia initiala, proiectul genereaza si o serie de cheltuieli operationale pe perioada de viata a proiectului. Costurile de operare - mii lei/km retea/an au fost fundamentate ca o medie a costurilor de operare a diversilor operatori din zona si repezinta cheltuielile cu intretinerea sistemelor de distributie, cheltuieli cu salarii, chirii, utilitati, licente, autorizatii, etc. si se regasesc in „Centralizatoarele cu fluxurile de venituri/cheltuieli si indicatorii economici" anexate.

Veniturile financiare sunt constituite din incasarile tarifului de distributie .Au fost luate in considerare in cadrul analizei financiare cheltuielile cu redeventa la un nivel de 1% din venitul realizat din tariful de distributie. Redeventa se va stabili in urma contractului de concesiune intre autoritatea locala si operatorul serviciului de distributie.

Categoria de consumatori:
B2 - 968 consumatori. Consum anual estimat 2.852,00 mii mc/an

Modelul financiar

Modelul teorectic aplicat este Modelul DCF - Discounted Cash Flow (Cash Flow Actualizat) - care cuantifica diferenta dintre veniturile si cheltuielile generate de proiect pe durata sa de functionare, ajustand aceasta diferenta cu un factor de actualizare, operatiune necesara pentru a „aduce" o valoare viitoare in prezent, la un numitor comun.

Indicatori de evaluare a performantelor:

Indicatorii de performanta utilizati de analiza noastra sunt urmatorii:

- Rata Interna de Rentabilitate (RIR);
- Valoarea Actualizata Neta (VAN);
- Raportul Cost/Beneficiu (C/B);
- Durata de recuperare a investitiei

Valoarea Actualizata Neta (VAN)

Dupa cum o va demonstra matematic si formula de mai jos, VAN indica valoarea actuala - la momentul zero - a implementarii unui proiect ce va genera in viitor diverse fluxuri de venituri si cheltuieli.

Unde:

$$
\mathrm{VAN}=\quad \sum_{i=1}^{n} \frac{C F_{t}}{(1+k)^{t}}+\frac{V R_{n}}{(1+k)^{t}}-I_{0}
$$

CFt = cash flow-ul generat de proiect in anul "t" - diferenta dintre veniturile si cheltuielile efective

VRn= valoarea reziduala a investitiei in ultimul an de analiza

ptomenty

10= investitia necesara pentru implementarea proiectului
$k=$ rata de actualizare (in cazul nostru 5.5%);
$\mathrm{t}=$ numarul de ani ai perioadei de previziune luati in considerare pentru calculul VAN; ia valori de la 1 la 40

Cu alte cuvinte, un indicator VAN pozitiv arata faptul ca veniturile viitoare vor excede cheltuielile, toate aceste diferente anuale „aduse" in prezent - cu ajutorul ratei de actualizare - si insumate reprezentand exact valoarea pe care o furnizeaza indicatorul.

Rata interna de rentabilitate (RIR) este definita drept acea rata de actualizare pentru care valoarea actualizata neta este egala cu zero. Astfel, RIR este acea rata de actualizare la care valoarea fluxului de numerar net actualizat este zero, respectiv incasarile actualizate sunt egalate de platile actualizate.

Aceasta rata exprima capacitatea medie de valorificare a resurselor utilizate pe durata luata in considerare ca fiind perioada de viata a investitiei.

Astfel, RIR=r daca: $\quad \sum_{i=0}^{20} \frac{\mathrm{Fn}_{1}}{(1+r)}=0$
Unde:
Fnt - Fluxul de numerar anual
r-Rata de actualizare
t - Numarul de ani de viata a investitiei, ia valori de la 1 la 41
Pentru calculul RIR se utilizeaza metoda interpolarii, formula de calcul fiind urmatoarea:
Unde:

rmax- rata de actualizare care face ca valoarea fluxurilor nete actualizate sa fie negative
Fnrmin, Fnrmax- fluxurile nete actualizate cu rmin, respective rmax
Valoarea calculata trebuie sa respecte conditia RiR $>$ RIR reglementat $=8.43 \%$
Raportul Cost/Beneficiu (RCB)
Raportul cost-beneficiu este un indicator complementar al VAN, comparand valoarea actuala a beneficiilor viitoare cu costurile viitoare, incluzand valoarea investitiei:

$$
\mathrm{RCB}=\frac{V A N+I_{0}}{I_{0}}=\frac{V A N}{I_{0}}+1
$$

In continuare, pentru a aprecia viabilitatea financiara a proiectului investitional propus au fost consolidate costurile si beneficiile financiare identificate si cuantificate.

Analiza beneficiilor financiare nete presupune actualizarea acestora, pentru a asigura comparabilitatea beneficiilor si costurilor care se inregistreaza in momente diferite in timp. Rata de actualizare de referinta este 5.5%.

Estimarea veniturilor si costurilor de operare

Veniturile sunt realizate numai din tariful de distributie aplicat volumului de vanzari pe tipul de categorie de consumator si a puterii calorifice a gazului vandut, prezentate in Anexa.

Costurile de operare reprezinta produsul intre costul specific de operare realizat de operatorul din proximitate exprimat in lei/m si lungimea sistemului de distributie proiectat exprimat in $\mathrm{km}, \mathrm{Co}=10,20 \mathrm{mii}$ lei $/ \mathrm{km} / \mathrm{an}$.

Definirea structurii de finantare a investitiei si profitabilitatea sa financiara

Aplicand metodologia descrisa mai sus, calculele realizate si rezultatele obtinute sunt sintetizate in tabelele din Anexa "Centralizator cu fluxurile de venituri/cheltuieli si indicatori economici" din prezentul proiect si prezentate sintetic in tabelul de mai jos.

Prezentarea principalilor indicatori economico-financiari

Scenariul 1 - preturi fara TVA

Lungime retea proiectata, Km	24,46
Costuri exploatare anuale specifice, lei/m	10,20
Cost operare pe investitie, mii lei	249,45
Durata de recuperare a investitiei, $T<40$ ani	29
Costul investitiei, mii lei	$7.309,12$
Beneficiu total obtinut, mii lei	$18.566,24$
Rata cost beneficiu	0,39
Valoarea Actualizata neta, mii lei	$4.146,08$
Rata interna de rentabilitate	6,90

Scenariul 2 - preturi fara TVA

Lungime retea proiectata, Km	24,46
Costuri exploatare anuale specifice, lei/m	10,20
Cost operare pe investitie, mii lei	249,45
Durata de recuperare a investitiei, T<40 ani	24
Costul investitiei, mii lei	$6.468,35$
Beneficiu total obtinut, mii lei	$19.070,71$
Rata cost beneficiu	0,34
Valoarea Actualizata neta, mii lei	$4.595,38$
Rata interna de rentabilitate	7,91

Finantarea investitiei
Beneficiarul va finanta partial lucrarile de investitii, procentul urmand a fi stabilit in urma concesionarii serviciului..

Estimari privind forta de munca ocupata prin realizarea investitiei.
Toate etapele principale care concura la realizarea acestei investitii, se vor executa de societati autorizate, care participand la aceasta investitie reusesc sa-si mentina forta de munca existenta, si sa-si plateasca obligatiile la bugetul de stat.

Se pot crea noi locuri de munca, si in plus, sunt sprijinite societatile autorizate sa-si pastreze personalul angajat.

4.2.Analiza de riscuri, masuri de prevenire/diminuare a riscurilor.

O data ce au fost identificate variabilele critice pentru executarea analizei riscului este necesar sa se asocieze distributiei si probabilitatii de aparitie pentru fiecare dinte ele, definite intr-un domeniu precis de valori, in jurul celei mai bune estimari, utilizata in cazul de baza in scopul calcularii indicilor evaluarii.

Nu intotdeauna se poate determina profitabilitatea modificarii cu un anumit procent a valorii unei variabile critice. Deci, nu intotdeauna putem dezvolta o analiza de risc pe baza analizei de senzitivitate.

In aceste cazuri se va efectua o analiza de risc calitativa - evaluarea calitativa a riscurilor prezentate narativ

Riscuri posibile (tehnice, financiare, institutionale,constrangeri legislative)

a) Riscul de piata - este posibil ca populatia sa nu perceapa in mod corect aceasta investitie, in special schimbarea mentalitatii in ceea ce priveste protectia mediului, confortul obtinut prin schimbarea sistemului de incalzire a locuintelor si trebuie intensificata campania de promovare, chiar cu riscul unor costuri suplimentare neprevazute in proiect.
b) Riscul de management - trebuie intervenit urgent prin urmarirea respectarii prevederilor cu sprijinul consultantului local al proiectului. Trebuie sa evitam daca este cazul - influentele politice in ceea ce priveste desfasurarea proiectului.
c) Riscul de previzionare - este posibil ca datele prognozate in ipotezele de calcul (gradul de racordare, consumul anual de gaze pe categorii de consumatori) sa difere de realitatea din piata, in viitorii ani. Datele de intrare au fost estimate pe baza indicilor statistici, profilului de consumator din zona si nu se pot modifica radical.

Pot sa apara intârzieri in semnarea contractelor de racordare sau intârzieri in relatiile cu furnizorii.
d) Riscul financiar - care se poate manifesta prin lipsa finantarii, flux de numerar incorect previzionat, lipsa de lichiditati a investitorului si beneficiarilor finali. Trebuie intervenit la consultantul local al proprietarului. In cazul proiectului actual - calcul economic-financiar a fost facut prin prisma unor coeficienti rezonabili bazati pe prognoze statistice.

* Cresterea nejustifica a preturilor de achizitie pentru materiale ,manopera si utilaje cuprinse in proiect.
* Cresterea peste limtele de 5\% a preturilor materialelor si serviciilor.
* Modificari majore ale cursului de schimb.
* Administrarea riscurilor financiare
- estimarea cat mai realista a cresterii preturilor pe piata prin obtinerea cât mai multe oferte la devizul estimativ;
- includerea in proiect a unor cheltuieli de 4.4\% neprevazute.
e) Riscuri tehnice

Aceasta categorie depinde direct de modul de desfasurare a activitatilor de proiectare si executie:

- Etapizarea eronata a lucrarilor;
- Erori in calcul la solutile tehnice;
- Executarea necorespunzatoare a unei parti din lucrare.

Adiministrarea acestor riscuri consta in:

- verificarea proiectului se va face de o terta persoana;
- planificarea timpului de executie s-a prevazut marje de eroare pentru etapele principale;
- proiectul si resursele materiale se incadreaza in respectarea standardelor de calitate U.E.
f) Riscuri legate de esecul de furnizare
- Contestatiile in urma procesului de achizitie publica care duc la intârzierea Iucrarilor;

Ele se pot evita prin:

- respectarea riguroasa a reglementarilor privind achizitiile publice
- popularizarea proiectului fara incalcarea prevederilor legale - pentru a participa la licitatie cât mai multe firme.

g) Riscuri institutionale

Aceste se pot administra prin prevederi in conditiile de licitatie a unui criteriu de experienta in domeniu a firmelor participante.
h) Riscuri legale

Respectarea legislatiei in vigoare poate conduce la intârzierea aplicarii proiectului prin:

- respectarea licitatiilor:
- modificari in proiect datorita modificarilor de ordin legislativ.
i) Riscuri de mediu
- degradarea mediului prin lucrari ce urmeaza a fi realizate.

Toate aceste riscuri apar doar pe perioada de executie a proiectului.
In documentatia de licitatie pentru contractul de executie se vor face precizari privind:

- minimizarea suprafetelor ocupate temporar;
- locuri speciale pentru depozitarea deseurilor, rezultate din executie
- refacerea zonei dupa terminarea lucrarilor.

5. SCENARIUL / OPTIUNEA TEHNICO - ECONOMIC(A) OPTIM(A), RECOMANDAT(A)

Tinand cont ca regimul de functionare presiune inalta pentru retelele de distributie este nou implementat (NTPEE/2018), neexistand un istoric in operarea acestora si ca valorile estimate pentru cele doua scenarii sunt comparabile, propunem ca varianta optima Scenariul 1, in care retelele de distributie vor functiona in regim de presiune medie.
5.1. Principalii indicatori tehnico-economici aferenti obiectivului de investitii:

SCENARIUL 1

Valoarea de investitie fara TVA (aprilie 2019) $=7.309,122$ mii lei
cu TVA (aprilie 2019) $=8.697,855$ mii lei din care:

- valoarea C+M fara TVA (aprilie 2019) $=5.810,706$ mii lei.
cu TVA (aprilie 2019) $=6.914,741$ mii lei

Esalonare investitie:

Anul I

Valoarea de investitie fara TVA (aprilie 2019) $=2.923,649$ mii lei
cu TVA (aprilie 2019) $=3.479,142$ mii lei din care :

- valoarea C+M fara TVA (aprilie 2019) $=2.324,282$ mii lei.
cu TVA (aprilie 2019) $=2.765,896$ mii lei

Anul II

Valoarea de investitie fara TVA (aprilie 2019) $=3.654,561$ mii lei cu TVA $($ aprilie 2019$)=4.345,358 \mathrm{mii}$ lei din care:

- valoarea C+M fara TVA (aprilie 2019) $=2.905,353$ mii lei.
cu TVA (aprilie 2019) $=3.457,370$ mii lei

Anul III

Valoarea de investitie fara TVA (aprilie 2019) $=730,912$ mii lei
cu TVA (aprilie 2019) $=869,785$ mii lei din care:

- valoarea C+M fara TVA (aprilie 2019) $=581,071$ mii lei.
cu TVA (aprilie 2019) $=691,474$ mii lei

Capacitati

- O statie de reglare masurare predare (SRMP) comuna pentru localitatile Gramesti, Candesti si Mihaileni, amplasata la intrarea in localitatea Candesti, jud. Botosani, statia de masurare avand in final capacitatea $\mathrm{Q}=6500 \mathrm{Nmc} / \mathrm{h}$;
- Post de masurare (PM) - Q $=2.000 \mathrm{Nmc} / \mathrm{h}$
- Retea distributie (teava PE100 SDR11 cu diametre cuprinse intre Dn160mm \div Dn63mm) - L=24.456m;
- Calculul de dimensionare s-a realizat pentru:
- Gospodarii - 1035 buc
- Agenti economici-20 buc
- Obiective socio-culturale - 14 buc

Se vor alimenta:

- Gospodarii - 1035 buc
- Agenti economici-20 buc
- Obiective socio-culturale - 14 buc

Durata estimata pentru investitie este:

- 30 luni (proiectare PAC, PTE+ executie), din care 27 luni executie - Scenariul 1

Scenariul 1

RIR: 6,90\%
Durata de recuperare: 29ani

6. URBANISM, ACORDURI SI AVIZE CONFORME

> Certificat de urbanism emis de Consilul Judetean Botosani in vederea obtinerii autorizatiei de construire
> Avize si acorduri aferente certificatului de urbanism
Certificatul de Urbanism si avizele mentionate insotesc prezenta documentatie.

Intecmit,

Investitila:
Proiectant:
Solicitant:
Solicitant:
Proiect nr :
Nod final Tronson

Nod Initial	Nod final	Tronson	Metan (150id de calcul	Material conducta	$\begin{gathered} \hline \text { De (Nominal) } \\ \mathrm{mm} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Di} \\ \mathrm{~mm} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Gr. perete } \\ \mathrm{mm} \\ \hline \end{array}$	$\begin{gathered} \text { Rugozitate (k) } \\ \mathrm{mm} \\ \hline \end{gathered}$	$\begin{gathered} \text { Lungime } \\ \mathrm{m} \\ \hline \end{gathered}$	Total K	$\begin{gathered} \text { Debit masic } \\ \mathrm{kg} / \mathrm{h} \end{gathered}$	Debit volumetric $\mathrm{m}^{3} / \mathrm{h}$	$\begin{array}{\|c\|} \hline \text { Debit normalizat } \\ \mathrm{Nm}^{3} / \mathrm{h} \\ \hline \end{array}$	$\begin{aligned} & \text { Viteza } \\ & \mathrm{m} / \mathrm{sec} \\ & \hline \end{aligned}$	$\begin{gathered} \text { P1 } \\ \text { bar.g } \end{gathered}$	$\begin{gathered} \text { P2 } \\ \text { bar.g } \end{gathered}$	$\begin{aligned} & \Delta \mathrm{P} \\ & \text { bar } \end{aligned}$	Re	Tip curgere	λ
		P1	Metan (15 ${ }^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	PEHD 100 SDR11 (PN16)	60	130,8	14,6	0,0015	1492	0	1931,947	653,789	2698,250	13,515	4,2838	3,8698	0,414	474900	Turbulent	0,01345
		P3	Mveran (15 C C la 3,4 bar.g, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	PEHD 100 SDR11 (PN15)	140	114,6	12,7	0,0015	659	0	1931,947	653,789	2698,250	17,607	3,8698	3,5177	0,352	54203	Turbulent	0,01317
		P4	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{bar.g}$, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{\text {2 }}$)	PEHD 100 SDR11 (PN16)	140	114,6	12,	0,0015	1482	0	1495,995	506,259	2089,378	13,634	3,5177	3,029	0,4887	419721	Turbulent	0,01376
		P5	Metan ($15^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SSR11 (PN16)	110	114,6	$\frac{12,7}{10}$	0,0015	2268	0	1216,390	411,638	1698,869	11,085	3,029	2,5162	0,5128	341274	Turbulent	0,01427
		P5	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{bar} . \mathrm{g}$, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	230	0	+ 488,6392	165,358	682,447	7,22	2,516	2,3722	0,144	4	furbulent	0,0162
		P7	Metan ($15^{\circ} \mathrm{C}$ la 3,4 bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	431	0	40,955	13,860	57,200	- 4,753	2,3722	2,3426	0,029	65623	Turbulent	1981
		P8	Metan ($25^{\circ} \mathrm{C}$ la $3,4 \mathrm{bar.g}$, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	33	0	379,359	128,379	529,831	17,186	2,3426	2,3322	0.0104	25619	Turbulent	, 2447
		P9	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{bar} . \mathrm{g}$, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	373	0	153,568	51,969	214,480	6,957	3,4745	3,4745	0,0431	237302	Turbulent	0,01539
		P10	Metan ($15^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	660	0	42,444	14,363	59,279	1,923	3,3795	3,3625	0,017	$\frac{96062}{2650}$	Turbulent	0,0183
		${ }^{1} 11$	Metan ($15^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	1442	0	225,791	76,410	315,351	10,229	3,4745	2.7391	0,7355	141240	Turbulent	0,02426
		P12	Metan ($15^{\circ} \mathrm{C}$ la 3,4 bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0.0015	606	0	56,593	19,152	79,041	2,564	3,3795	3,3536	0,026	35401	Turbulent	0,016969
		P13	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{bar} . \mathrm{g}$, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	466	0	254,846	86,242	355,930	11,545	3,029	2,7332	0,2958	159415	Turbulent	0,01657
		P14	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{tbar} \cdot \mathrm{g}$, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	382	0	60,129	20,348	83,979	2,724	2,7332	2,7149	0,0182	37613	Turbulent	$\bigcirc 0,02238$
		P15	Metan ($15^{\circ} \mathrm{Claa3} 3,4$ bar.g, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	${ }^{\text {PE EHD } 100}$ SDR11 (PN16)	63	51,4	5,8	0,0015	264	0	17,685	5,985	24,700	0,801	2,7149	2,7134	0,0015	11063	Turbuient	0,03014
		${ }_{\text {P17 }}$	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{~A}$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	90	73,6	8,2	0,0015	2715	0	182,337	61,705	254,661	4,029	2,7332	2,5653	0,1679	79655	Turbulent	0,01898
		P18	Metan ($15^{\circ} \mathrm{Clag} 3,4$ bar.g. densitate $2,2555 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	333	0	21,222	7,182	29,640	0,961	2,7149	2,712	0,0025	13275	Turbulent	0,02876
		P19	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{bar}$.g. densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	90	73,6	8,2	0,0015	110	0	472,325	188,852	659,672	12,33	2,5162	2,4608	0,055	243791	Turbulent	0,01524
		P20	Metan ($15^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	90	73,6	8,2	0,0015	168	0	351,306	118,885	6590,651	$\frac{10,436}{7}$	2,4608	2,423	0,0378	206337	Turbulent	0,01572
		P21	Metan ($15^{\circ} \mathrm{C}$ la 3,4 barg, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	90	73,6	8,2	0,0015	1486	0	315,935	106,915	441,250	6,981	2,3892	2, 2, 1424	0,0338	135470	Turbulent	0,01663
		P22	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{bar}$.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	90	73,6	8,2	0,0015	911	0	156,768	53,052	218,950	3,464	2,1424	2,0994	0,246	$\underline{138018}$	Turbulent	0,01698
		P23	Metan ($15^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	269	0	26,528	8,977	37,050	1,202	2,0994	2,0964	0,003	16594	Turbulent	
		P24	Metan ($15^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	673	0	41,435	14,022	57,870	1,877	2,4608	2,4442	0,0166	25919	Turbulent	
		${ }^{\text {P25 }}$	Metan ($15^{\circ} \mathrm{Clag} 3,4 \mathrm{bar} \cdot \mathrm{g}$, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	PEHD 100 SOR11 (PN16)	63	51,4	5,8	0,0015	229	0	60,889	20,605	85,041	2,758	2,423	2,4118	0,0112	38088	Turbulent	0,02232
		P27	Metan (15 $5^{\circ} \mathrm{Cla} 3,4 \mathrm{tarar}$, , densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	419	0	26,528	8.977	37,050	1,202	2,4118	2,4071	0,0047	16594	Turbulent	0,02718
		P28	Metan ($15^{\circ} \mathrm{Cla} 3,4 \mathrm{bar} .8$, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	PEHD 100 SDR11 (PN16)	63	51,4	5,8 5,8	0,0015	294	0	19,454	6,583	27,170	0,881	2,4118	2,4099	0,0019	12169	Turbulent	0,0294
		P29	Metan ($15^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	975	0	53,056	17,955	74,101	$\frac{1,847}{2,404}$	2,423	2,4464	0,0144	25498	Turbulent	0,02449
		P30	Metan ($15^{\circ} \mathrm{Cla} 3,4$ bar.g, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	122	0	10,611	3,591	14,820	0,481	2,3892	2,3889	0,0003	$\frac{33188}{6338}$	Turbulent	0,02303
		P31	Metan ($15^{\circ} \mathrm{C}$ la 3,4 bar.e, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	221	0	15,917	5,386	22,230	0,721	2,3892	2,3882	0,001	9957	Turbulent	0,03458
		${ }_{\text {P32 }}$	Metan (15 $5^{\circ} \mathrm{Cla} 3,4$ barg, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	PEHD 100 SDR11(PN15)	63	51,4	5.8	0,0015	203	0	53,056	17,955	74,101	2,404	2,1424	2,1347	0,0078	33188	Turbulent	0,02303
		P34	Metan ($15^{\circ} \mathrm{C}$ la 3,4 bar, g, densitate $\left.2,955 \mathrm{~kg} / \mathrm{m}^{3}\right)$	PEHD 100 SDR11 (PN16)	90	71,4	5,8	0,0015	177	0	17,685	5,985	24,700	0,801	2,0994	2,0985	0,001	11063	Turbulent	0,03014
		P35	Metan ($15^{\circ} \mathrm{C}$ la $3,4 \mathrm{bar} . \mathrm{g}$, densitate $2,955 \mathrm{~kg} / \mathrm{m}^{3}$)	PEHD 100 SDR11 (PN16)	63	51,4	5,8	0,0015	501	0	-53,056	17,955	378,029	5,98	2,3722	2,1088	0,2633	118243	Turbulent	0,01751
															2,3426	2,3234	0,0192	33188	Turbulent	0,02303

DEVIZ GENERAL

Privind cheltuielile necesare realizarii obiectivului de investitii :

"INFIINTARE DISTRIBUTIE GAZE NATURALE IN COMUNA MIHAILENI, JUDETUL BOTOSANI"

Beneficiar: Comuna Mihaileni
in mii lei

Proiect nr. 2019021
Scenariul 1

$\begin{aligned} & \mathrm{Nr.} \\ & \mathrm{crt.} \end{aligned}$	Denumirea capitolelor si subcapitolelor de cheltuieli	Valoare (fără TVA)	TVA	Valoare (inclusiv TVA)
		MII LEI	MII LEI	MII LEI
1	2	3	4	5
CAPITOLUL 1				
Cheltuieli pentru obtinerea si amenajarea terenului				
1.1	Obtinerea terenului	0,000	0,000	0,000
1.2	Amenajarea terenului	0,000	0,000	0,000
1.3	Amenajari pentru protectia mediului si aducerea la st. initiala	0,000	0,000	0,000
1.4	Cheltuieli pentru relocarea/protectia utilitatilor	0,000	0,000	0,000
	TOTAL CAPITOL 1	0,000	0,000	0,000
CAPITOLUL 2				
Cheltuieli pentru asigurarea utilitatilor necesare obiectivului de invetitii				
2.1	Drum acces PM	3,500	0,665	4,165
2.2	Alimentare cu energie electrica PM	5,000	0,950	5,950
	TOTAL CAPITOL 2	8,500	1,615	10,115
CAPITOLUL 3				
Cheltuieli pentru proiectare si asistenta tehnica				
3.1	Studii	40,000	7,600	47,600
3.1.1	Studii de teren	30,000	5,700	35,700
3.1.2	Raport privind impactul asupra mediului	0,000	0,000	0,000
3.1.3	Alte studii specifice	10,000	1,900	11,900
3.2	Documentatii suport si cheltuieli pentru obtinerea de avize, acorduri si autorizatii	5,000	0,950	5,950
3.3	Expertizare tehnica	0,000	0,000	0,000
3.4	Certificarea performantei energetice si auditului energetic al cladirilor	0,000	0,000	0,000
3.5	Proiectare	182,210	34,620	216,830
3.5.1	Tema de proiectare	0,000	0,000	0,000
3.5.2	Studiu de prefezabilitate	0,000	0,000	0,000
3.5.3	Studiu de fezabilitate/documentatie de avizare a lucrarilor de interventii si deviz general	50,000	9,500	59,500
3.5.4	Documentatiile tehnice necesare in vederea obtinerii avizelor/acordurilor/autorizatiilor	10,000	1,900	11,900
3.5.5	Verificarea tehnica de calitate a proiectului tehnic si a detaliilor de executie	5,000	0,950	5,950
3.5.6	Proiect tehnic si detalii de executie	117,210	22,270	139,480

3.6	Organizarea procedurilor de achizitie	0,000	0.000	0.000
3.7	Consultanta	60,740	11,541	72,281
3.7 .1	Managementul de proiect pentru obiectivul de investitii	40,000	7,600	47,600
3.7.2	Auditul financiar	20,740	3,941	24,681
3.8	Asistenta tehnica	91,110	17,311	108,421
3.8.1	Asistenta tehnica din partea proiectantului	16,110	3,061	19,171
3.8.1.1	1 pe perioada de executie a lucrarilor	10,110	1,921	12,031
3.8.1.2	pentru participarea proiectantului la fazele incluse in programul de control al lucrarilor de executie, avizat de catre Inspectoratul de Stat in Constructii	6,000	1,140	7,140
3.8.2	Dirigentie de santier	75,000	14,250	89,250
	TOTAL CAPITOL 3	379,060	72,021	451,081
CAPITOLUL 4				
Cheltuieli pentru investitia de baza				
4.1	Constructii si instalatii	5.688,271	1.080,771	6.769,042
4.1.1	Racord presiune inalta comun $\mathrm{L}=15 \mathrm{~m}$	33,021	6,274	39,295
4.1.2	Retea distributie presiune medie $\mathrm{L}=24,456 \mathrm{Km}$	5.655,250	1.074,498	6.729,748
4.2	Montaj utilaje, echipamente tehnologice si functionale	0,000	0,000	0,000
4.3	Utilaje,echipamente tehnologice si functionale care necesita montaj	385,404	73,227	458,631
1	Statie de reglare masurare predare (SRMP) comuna	313,404	59,547	372,951
4.3. 2	Post de masurare (PM)	72,000	13,680	85,680
4.4	Utilaje fara montaj si echipamente de transport	0,000	0,000	0,000
4.5	Dotari	0,000	0,000	0,000
4.6	Active necorporale	0,000	0,000	0,000
	TOTAL CAPITOL 4	6.073,675	1.153,998	7.227,673
CAPITOLUL 5				
Alte cheltuieli				
5.1	Organizare de santier ($2,5 \%$)	142,419	27,060	169,479
5.1.1.	Lucrari de constructii si instalatii aferente organizarii de santier	113,935	21,648	135,583
5.1.2.	Cheltuieli conexe organizarii santierului	28,484	5,412	33,896
5.2	Comisioane	68,918	13,094	82,012
5.2.1.	Comisioane si dobanzile aferente creditului bancii finantatoare	0,000	0,000	0,000
5.2.2.	Cota aferenta ISC pentru controlul calitatii lucrarilor de constructii	29,054	5,520	34,574
5.2.3.	Cota aferenta ISC pentru controlul statului in amenajarea teritoriului, urbanism si pentru autorizarea lucrarilor de constructii	5,811	1,104	6,915
5.2.4.	Cota aferenta Casei Sociale a Constructorilor - CSC	29,054	5,520	34,574
5	Taxe pentru acorduri, avize conforme si autorizatia de construire/desfiintare	5,000	0,950	5,950
5.	Cheltuieli diverse si neprevazute	635,550	120,754	756,304
5.4 C	Cheltuieli pentru informare si publicitate	1,000	0,190	1,190
	TOTAL CAPITOL 5	847,887	161,098	1.008,985
CAPITOLUL 6				
Cheltuieli pentru probe tehnologice si teste				
6.1 P 6.2	Pregatirea personalului de exploatare	0,000	0,000	0,000
6.2 Probe tehnologice		0,000	0,000	0,000
		0,000	0,000	0,000
TOTAL GENERAL		7.309,122	1.388,733	8.697,855
	Din care $\mathbf{C}+\mathrm{M}$	5.810,706	1.104,034	6.914,741

DEVIZ OBIECT NR. 4.1.1
RACORD INALTA PRESIUNE COMUN COM. GRAMESTI, CANDESTI SI MIHAILENI

Nr. Crt.	Denumirea categoriilor de lucrari aferente obiectului	Valoarea pe categorii de lucrari
1	Racord inalta presiune conform fisa de evaluare nr. 1	33021
	TOTAL DEVIZ PE OBIECT	33021

FISA DE EVALUARE NR. 1
RACORD INALTA PRESIUNE COMUN COM. GRAMESTI, CANDESTI SI MIHAILENI

1. Lucrari principale cuprinse pe ml . de traseu conducta gaze naturale:

Conducte din OLø6" izolata cu izolatie foarte intarita
$15 \mathrm{ml} \times 382$ lei $=5730$ lei

Vana OLø6":
1 buc $\times 16740$ lei $=16740$ lei

- sapatura, compactare, umplutura 350 mc
- nisip
- probe presiune si etanseitate

2. Tarif racordare

Tarif verificare documentatie tehnica
10 mc

TOTAL: 22470 lei

TOTAL: 71875 lei

TOTAL GENERAL: 94345 lei

NOTA:

Valoarea racordului se va imparti intre cele 4 localitati astfel:

- 30\% com. Gramesti:

28303 lei
-35% com. Candesti: 33021 lei

- 35\% com. Mihaileni:

33021 lei

DEVIZ OBIECT NR. 4.1.2 RETELE DISTRIBUTIE

Nr. Crt.	Denumirea categoriilor de lucrari aferente obiectului	Laloarea pe categorii de lucrari
1	Retea distributie conform fisa de evaluare nr. 2	5655250
	TOTAL DEVIZ PE OBIECT	5655250

FISA DE EVALUARE NR. 2
a) Lucrari principale cuprinse pe ml de traseu gaze naturale din polietilena - presiune medie

Conducte din PE 100 SDR 11			
Denumire	Cantitate (ml)	Pret (RON) fara TVA	TOTAL
Dn 63mm	9902	110	1089220
Dn 90mm	7604	130	988520
Dn 110mm	1039	140	145460
Dn 140mm	4419	160	707040
Dn 160mm	1492	180	268560
TOTAL	$\mathbf{2 4 4 5 6}$		$\mathbf{3 1 9 8 8 0 0}$

b) Subtraversare drum judetean DJ291B (4buc) si drum national DN29C (3buc)

Denumire	Cantitate (ml)	Pret (RON) fara TVA	TOTAL
PE 100 SDR 11 Dn63mm, Dn90mm	140	550	77000
TOTAL			

c) Subtraversare ape: Molnita + Vladeni (6buc)

Denumire	Cantitate (ml)	Pret (RON) fara TVA	TOTAL
PE 100 SDR 11 Dn63mm, Dn90mm, Dn110mm, Dn180mm	300	650	195000
TOTAL			

d) Subtraversari podete

Denumire	Cantitate (ml)	Pret (RON) fara TVA	TOTAL
PE 100 SDR 11	600	400	240000
TOTAL			$\mathbf{2 4 0 0 0 0}$

e) Vane

Denumire	Cantitate (ml)	Pret (RON) fara TVA	TOTAL
Dn 63 mm	1	3500	3500
Dn 90 mm	3	4000	12000
Dn 160 mm	1	9500	9500
TOTAL			

f) Suduri

Denumire	Cantitate (buc)	Pret (RON) fara TVA	TOTAL
Suduri inclusiv mufe	1230	175	215250
TOTAL			

g) Terasamente

Denumire	Cantitate (mc)	Pret (RON) fara TVA	TOTAL
Sapatura	14200	85	1207000
Sapatura gropi pozitie	220	85	18700
Nisip	2900	95	275500
Fir trasor	26200	1,5	39300
Folie avertizoare PVC	26200	1	26200
Probe presiune si etanseitate	55	2500	137500
TOTAL			

DEVIZ OBIECT NR. 4.3.1
STATIE DE REGLARE MASURARE PREDARE (SRMP) 6500Nmc/h COMUNA COM. GRAMESTI, CANDESTI SI MIHAILENI

Nr. Crt.	Denumirea categoriilor de lucrari aferente obiectului	LEI Valoarea pe categorii de lucrari
1	Statie reglare masurare predare SRMP conform fisei tehnice 3	313404
	TOTAL DEVIZ PE OBIECT	313404

SC INFRA PLAN SRL
 BUCURESTI

Proiect nr. 2019021

FISA DE EVALUARE NR. 3

STATIE DE REGLARE MASURARE PREDARE (SRMP) $6500 \mathrm{Nmc} / \mathrm{h}$ COMUNA COM. GRAMESTI, CANDESTI SI MIHAILENI

1. Lucrari principale cuprinse:

- Platforma betonata
- Utilaje si echipamente tehnologice
- Montaj 895440 lei
- Dotari SRMP
- Alimentare cu energie electrica SRMP 70000 lei
- Drum acces SRMP

5000 lei

```
TOTAL \(=\quad 970440\)
```


NOTA:

Valoarea statiei se va imparti la fiecare comuna in parte astfel:

- 30\% com. Gramesti:

268632 lei

- 35\% com. Candesti:

313404 lei

- 35\% com. Mihaileni:

313404 lei

DEVIZ OBIECT NR. 4.3.2 POST MASURARE (PM) Q $=2000 \mathrm{Nmc} / \mathrm{h}$

Nr. Crt.	Denumirea categoriilor de lucrari aferente obiectului	LEI Valoarea pe categorii de lucrari
1	Post de masurare (PM) conform fisei de evaluare nr. 4	72000
	TOTAL DEVIZ PE OBIECT	$\mathbf{7 2 0 0 0}$

FISA DE EVALUARE NR. 4
 POST MASURARE (PM) $\mathrm{Q}=2000 \mathrm{Nmc} / \mathrm{h}$

1. Lucrari principale cuprinse :

- Platforma betonata
- Utilaje si echipamente tehnologice
- Montaj
- Dotari PM
- Alimentare cu energie electrica PM 5000
- Drum acces PM 3500

DEVIZ OBIECT 3.5

PROIECTARE

Nr. Crt.	Denumirea categoriilor de lucrari aferente obiectului	LEI Valoarea pe categorii de lucrari
1	Proiectare si inginerie	182210

Observatie: Valoarea proiectarii reprezinta 3\% din valoarea investitiei de baza

DEVIZ OBIECT 3.8
 ASISTENTA TEHNICA

Executie racord inalta presiune, SRMP, PM, retea distributie presiune medie

Nr. Crt.	Denumirea categoriilor de lucrari aferente obiectului	LEI Valoarea pe categorii de lucrari
1	Racord presiune inalta	1000
2	Statie reglare masurare predare (SRMP) comuna	2000
3	Post de masurare (PM)	1000
4	Retea distributie presiune medie	12100
5	Dirigentie de santier	75000
	TOTAL DEVIZ FINANCIAR	91100

Observatie: Valoarea asistentei tehnice reprezinta 1,5\% din valoarea investitiei de baza

"INFIINTARE DISTRIBUTIE GAZE NATURALE IN COMUNA MIHAILENI, JUDETUL BOTOSANI"
Proiect nr. 2019021
Grafic esalonare executie - SCENARIUL 1

急

